## Stability, complexity and diversity in random replicator models of ecology and evolutionary game theory

### Tobias Galla



University of Manchester UK



International Centre for Theoretical Physics Trieste, Italy

## **Game theory**

- 1944: von Neumann and Morgenstern 'Theory of games and economic behaviour'
- 1950s: John Nash, equilibrium concepts
- Nash equilibria seen as only viable outcomes of careful reasoning of rational players
- 1982: John Maynard Smith: 'Evolution and the theory of games', dynamics of a population of irrational players

Nobel prizes: 1994: J.C. Harsanyi, John Nash and R. Selten 2005: R. Aumann, Th. Schelling



- If is played by a (finite) number of players  $x, y, z, \ldots$
- each of them has a set of strategies X, Y, Z, ...
- and each is paid a payoff depending on his choice of strategy and on the choice of the other players
- different players might have different strategy sets

symmetric versus asymmetric games

## Matrix games

#### E.g. prisoners dilemma

| payoff for player 1 | 2 co-    | 2 defects |
|---------------------|----------|-----------|
|                     | operates |           |
| 1 co-operates       | 4        | 0         |
| 1 defects           | 5        | 3         |

| payoff for player 2 | 2 co-    | 2 defects |
|---------------------|----------|-----------|
|                     | operates |           |
| 1 co-operates       | 4        | 5         |
| 1 defects           | 0        | 3         |

## **Matrix games**

#### Another example: rock-scissors-paper game

rock > scissors, scissors > paper but paper > rock

$$A = \left( \begin{array}{rrrr} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{array} \right)$$

## **Matrix games**

- these were all so-called symmetric games: only one type of player
- now an asymmetric game

#### Battle of the sexes:

- strategies for male: run or stay
- strategies for female: coy or fast
- successful raising of offspring: payoff G for each
- parental investment -C shared if male stays, otherwise borne entirely by female
- Iong engagement: cost E for both

## **Battle of the sexes**

- successful raising of offspring: payoff G for each
- parental investment -C shared if male stays, otherwise borne entirely by female
- In long engagement: cost -E for both

| payoff for male | female coy            | female fast       |
|-----------------|-----------------------|-------------------|
| male runs       | 0                     | G                 |
| male stays      | $G - \frac{C}{2} - E$ | $G - \frac{C}{2}$ |

| payoff for female | male runs | male stays            |
|-------------------|-----------|-----------------------|
| female coy        | 0         | $G - \frac{C}{2} - E$ |
| female fast       | G - C     | $G - \frac{C}{2}$     |

#### Pure strategies

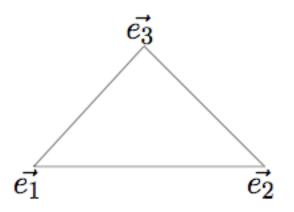
Assume player X has the choice between N pure strategies, labelled by

$$\vec{e_i}^x, i=1,\ldots,N$$

Then a mixed strategy corresponds to a vector

$$\vec{x} = (x_1, \dots, x_N), \qquad \sum_i x_i = 1$$

 $x_i$  is the probability to play pure strategy  $\vec{e_i}^x$ .



#### Mixed strategies

**I** in general will have payoff matrices  $a_{ij}$  and  $b_{ij}$ 

If player X plays mixed strategy  $\vec{x}$  and Y plays  $\vec{y}$  then

$$egin{aligned} 
u^x(ec x,ec y) &=& \sum_{ij} x_i a_{ij} y_j \ 
u^y(ec x,ec y) &=& \sum_{ij} x_i b_{ij} y_j \end{aligned}$$

## Nash Equilibria

A Nash equilibrium is a point  $(\vec{x} *, \vec{y} *)$  such that no player has an incentive to change strategies unilaterally given the other player's choice of strategy:

- Image:  $\vec{x} \star is the best choice for X given Y plays <math>\vec{y} \star is the best choice for X given Y plays <math>\vec{y} \star is the best choice for X given Y plays <math>\vec{y} \star is the best choice for X given Y plays for the best choice for X given Y plays for the best choice for X given Y plays for the best choice for X given Y plays for the best choice for X given Y plays for the best choice for X given Y plays for the best choice for X given Y plays for the best choice for X given Y plays for the best choice for X given Y plays for the best choice for X given Y plays for the best choice for X given Y plays for the best choice for X given Y plays for the best choice for X given Y plays for the best choice for X given Y plays for the best choice for X given Y plays for the best choice for X given Y plays for the best choice for X given Y plays for the best for the best choice for X given Y plays for the best for the best choice for X given Y plays for the best for X given Y plays for the best for the best for the best for the best for X given Y plays for the best for the$
- Image:  $\vec{y} \star is the best choice for Y given X plays <math>\vec{x} \star is$

$$u^x(ec{x}^{\,\star},ec{y}^{\,\star}) \;\; = \;\; \max_{ec{x}} \, 
u^x(ec{x},ec{y}^{\,\star})$$

$$u^y(\vec{x}^{\star}, \vec{y}^{\star}) = \max_{\vec{y}} \nu^y(\vec{x}^{\star}, \vec{y})$$

#### replicator equations

$$\frac{d}{dt}x_i(t) = x_i(t)[f_i[x(t)] - f(t)]$$

- evolutionary game theory
- Iearning dynamics, e.g. acquisition of grammar
- chemical reactions
- interacting species, eco-systems

- $\checkmark$  differential equations on a simplex S
- **population divided into** N types i = 1, ..., N with proportions  $x_i$
- If the fitness of i:  $f_i(t) = f_i[x_1(t), \dots, x_N(t)]$

The associated replicator equation reads

$$\frac{\dot{x_i}(t)}{x_i(t)} = f_i(t) - \overline{f}(t)$$

with  $\overline{f}(t) = \sum_i x_i(t) f_i(t)$  the mean fitness

$$\dot{x}_i(t) = x_i(t) \left( f_i(t) - \overline{f}(t) \right)$$

- species fitter than the average prosper
- species less fit than the average decrease in concentration

• 
$$\sum_{i} x_i = 1$$
 conserved in time

## **One population models**

- $\blacksquare$  only one type of players X
- e.g in the prisoner's dilemma or rock-scissors-paper game
- symmetric games

$$\dot{x}_i(t) = x_i(t) \left( f_i[x_1(t), \dots, x_N(t)) - \overline{f}(t) \right)$$

## **Multi-population models**

- multiple types of players X, Y, Z,... taking different positons in the game
- e.g. male-female in battle of sexes, buyers-sellers in an economy
- asymmetric games

$$\dot{x_i}(t) = x_i(t) \left( f_i^x[y_1(t), \dots, y_N(t)] - \overline{f^x}(t) \right)$$

$$\dot{y_j}(t) = y_j(t) \left( f_j^y[x_1(t), \dots, x_M(t)] - \overline{f^y}(t) \right)$$

Fixed points:

$$0 = x_i \left( f_i - \overline{f} \right)$$

It turns out

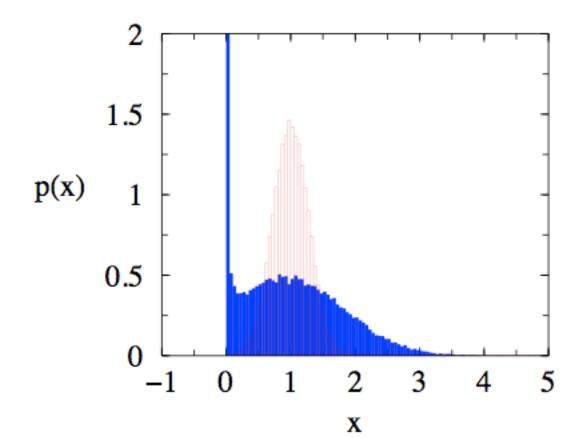
stable fixed points are Nash equilibria

but Nash equilibria are not necessarily stable FP

## **Fixed point distribution**

fraction  $\phi$  of surviving species,  $x_i > 0$ 

listribution ~ truncated Gaussian+ $(1 - \phi)\delta(x)$ 



$$\dot{x}_i(t) = x_i(t) \left( f_i[x_1(t), \dots, x_N(t)) - \overline{f}(t) \right)$$

games between two players

$$f_i[x_1,\ldots,x_N] = \sum_j J_{ij}x_j$$

games between p-players

$$f_i[x_1,\ldots,x_N] = \sum_{i_1,\ldots,i_{p-1}} J^i_{i_1,i_2,\ldots,i_{p-1}} x_{i_1} x_{i_2} \cdots x_{i_{p-1}}$$

study "all" matrix games 👄 random payoff matrices

$$\dot{x_i}(t) = x_i(t) \left( \sum_j J_{ij} x_j(t) - \overline{f}(t) \right)$$

vith

- J<sub>ij</sub> Gaussian couplings,  $\overline{J_{ij}^2} = 1/N$
- symmetry of couplings  $\overline{J_{ij}J_{ji}} = \Gamma/N$
- diagonal elements  $J_{ii} = -2u$
- u denotes 'co-operation pressure', drives the system into the simplex

$$\sum_i x_i(t) = N \qquad orall t$$

[Opper et al]

#### **Co-operation pressure**

[Peschel, Mende, The Prey-Predator model, Springer, 1985]



Fig. 89 The influence of  $\lambda$  upon source and sink behaviour

## Literature

- statistical mechanics of large one-population systems with random couplings
  - Opper/Diederich PRA '89, PRL '92
  - Fontanari, De Oliveira PRL '00, PRE '01, PRL '02, EPJB '03, PRE '04 (all replica)
  - Biscari/Parisi J.Phys. A '95 (1RSB)
- bi-matrix games
  - Berg/Engel PRL '99
  - Berg/Weigt Europhys. Lett '99
  - Berg PRE '00

## Random replicator equations

$$\dot{x}_i(t) = x_i(t) \left( \sum_j J_{ij} x_j(t) - \overline{f}(t) \right)$$

with random Gaussian couplings

 $\bigstar$  can be solved with techniques from spin glass physics in the thermodynamic limit  $\,N\to\infty\,$ 

**†** path-integrals, dynamical generating functionals

**<u>result</u>**: stochastic process for a representative strategy/species

fixed point ansatz gives closed equations for persistent OP

[Opper et al]

## **Generating functional analysis**

Study this with generating functionals.

- advantange over replica:
  - no Lyapunov function required
  - so that GFA can be used also for asymmetric couplings
  - replica theory only for symmetric couplings
- closed laws for dynamical order parameters:
  - correlation function  $C(t,t') = N^{-1} \sum_i \overline{\langle x_i(t) x_i(t') \rangle}$
  - response function  $G(t,t') = N^{-1} \sum_{i} \overline{\left\langle \frac{\partial x_i(t)}{\partial h(t')} \right\rangle}$
  - Lagrange multiplier  $\overline{f}(t)$

## **Generating functional analysis**

#### effective species process

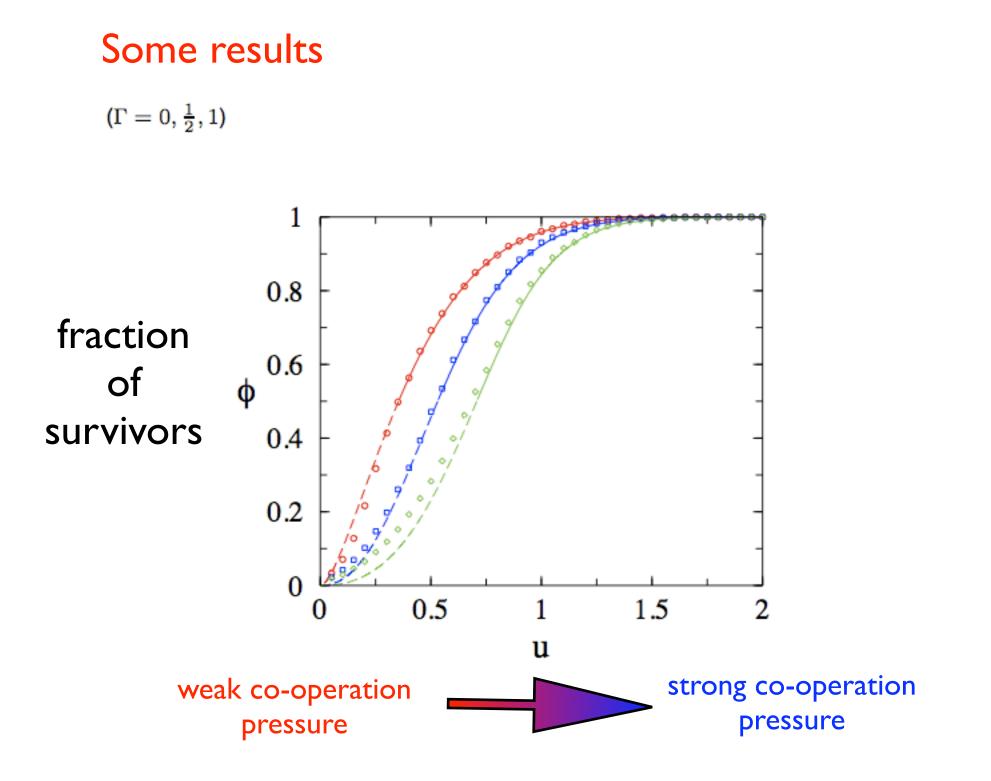
$$\dot{x}(t) = x(t) \left( -2ux(t) - \Gamma \frac{p(p-1)}{2} \int_{t_0}^t dt' G(t,t') C(t,t')^{p-2} x(t') + \eta(t) - \overline{f}(t) + h(t) \right)$$

self-consistent problem

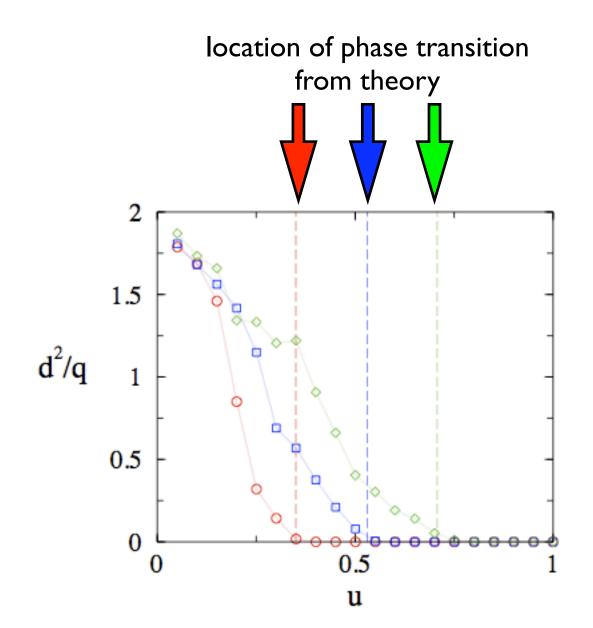
$$C(t,t') = \left\langle x(t)x(t') \right\rangle_{\star}, \quad G(t,t') = \left\langle \frac{\partial x(t)}{\partial h(t')} \right\rangle_{\star}, \quad \left\langle x(t) \right\rangle_{\star} = 1$$

$$\left\langle \eta(t)\eta(t')\right\rangle_{\star} = \frac{p}{2}C(t,t')^{p-1}$$

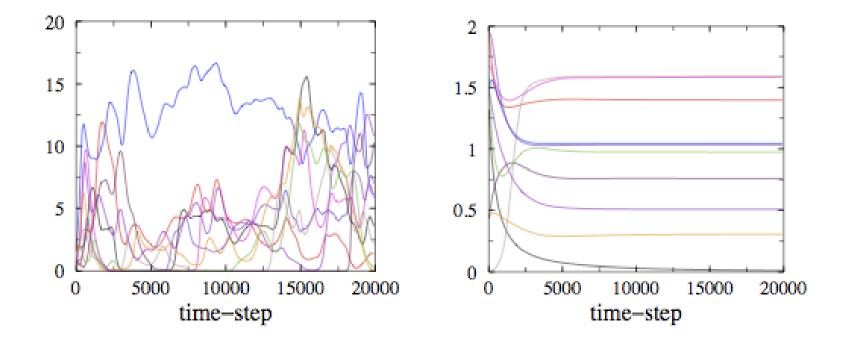
• retarded interaction  $\int_{t_0}^t dt' G(t,t') C^{p-2}(t,t') x(t')$ 



# Ergodicity breaking - sensitivity to initial conditions

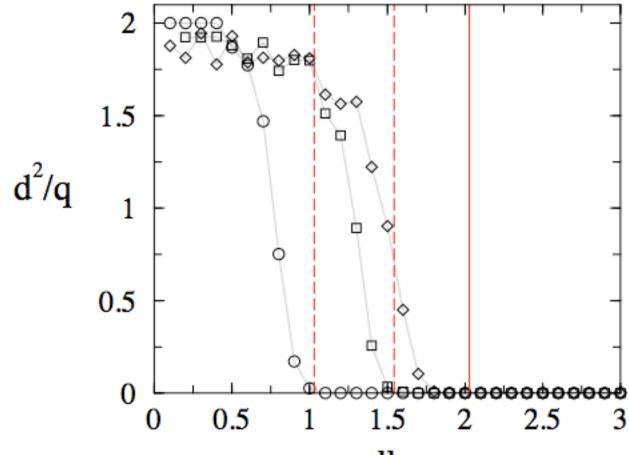


## **Typical trajectories**



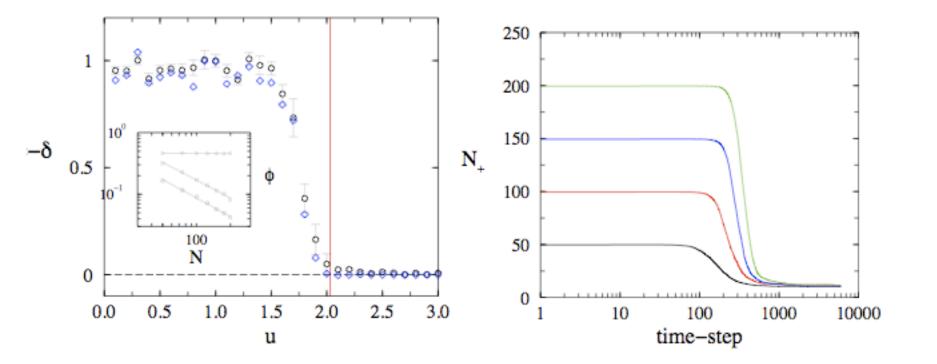
## p = 3

#### Find ergodicity breaking also for p = 3:



#### But if p = 3 but quadratic self-interaction find collapse of extensivity

 $\phi \sim N^{\delta}$ 

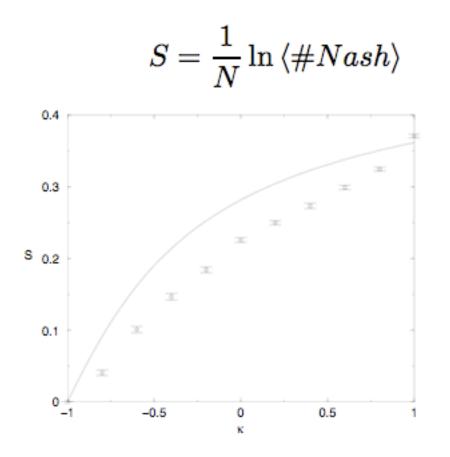


## **Bi-matrix games**

Payoff matrices  $a_{ij}$ ,  $b_{ij}$  with

$$\overline{a_{ij}^2} = \overline{b_{ij}^2} = 1/N, \qquad \overline{a_{ij}b_{ji}} = \Gamma/N$$

Berg/Weigt [Europhys. Lett. 48 129 (1999)]:



## **Bi-matrix games:**

two-population random replicators

$$egin{array}{rcl} \dot{x_i} &=& x_i(t) \left(-2 u x_i + \sum_j a_{ij} y_j - 
u^x 
ight) \ \dot{y_j} &=& y_j(t) \left(-2 u y_j + \sum_i b_{ij} x_i - 
u^y 
ight) \end{array}$$

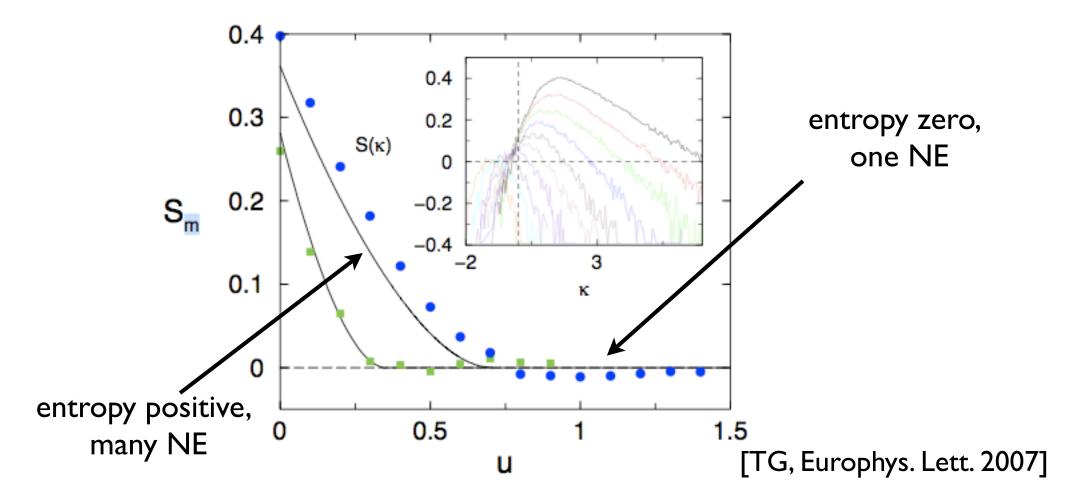
#### generating functionals lead to two coupled effective processes

$$\dot{x} = x(t) \left( -2ux + \Gamma \int dt' G_y(t,t') x(t') - \nu^x - \eta^x(t) \right)$$
$$\dot{y} = y(t) \left( -2uy + \Gamma \int dt' G_x(t,t') y(t') - \nu^y - \eta^y(t) \right)$$

with

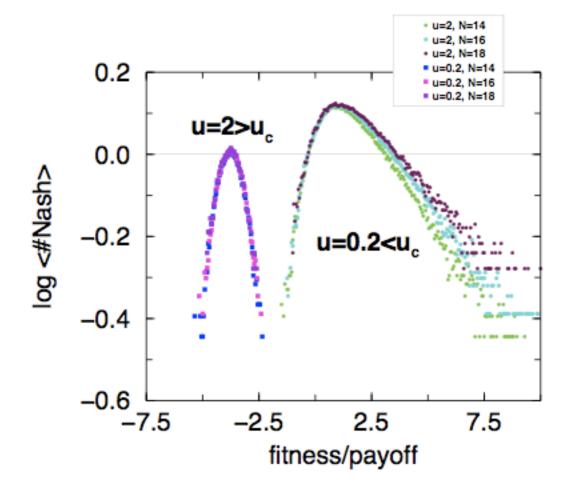
$$\left\langle \eta^{x}(t)\eta^{x}(t')\right\rangle = \left\langle y(t)y(t')\right\rangle \qquad \left\langle \eta^{y}(t)\eta^{y}(t')\right\rangle = \left\langle x(t)x(t')\right\rangle$$

### Dynamic instability and number of Nash equilibria



#### dynamic instability coincides with onset of exponential number of NE

## **Counting the Nash Equilibria**



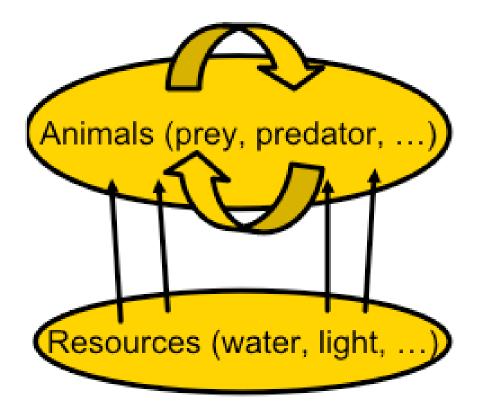
Statistical mechanics of simple model eco-systems work with Yoshimi Yoshino and Kei Tokita (Osaka)

J. Stat. Mech. (2007) P09003

Phys. Rev. E (2008) to appear

#### The model

two 'trophic levels':

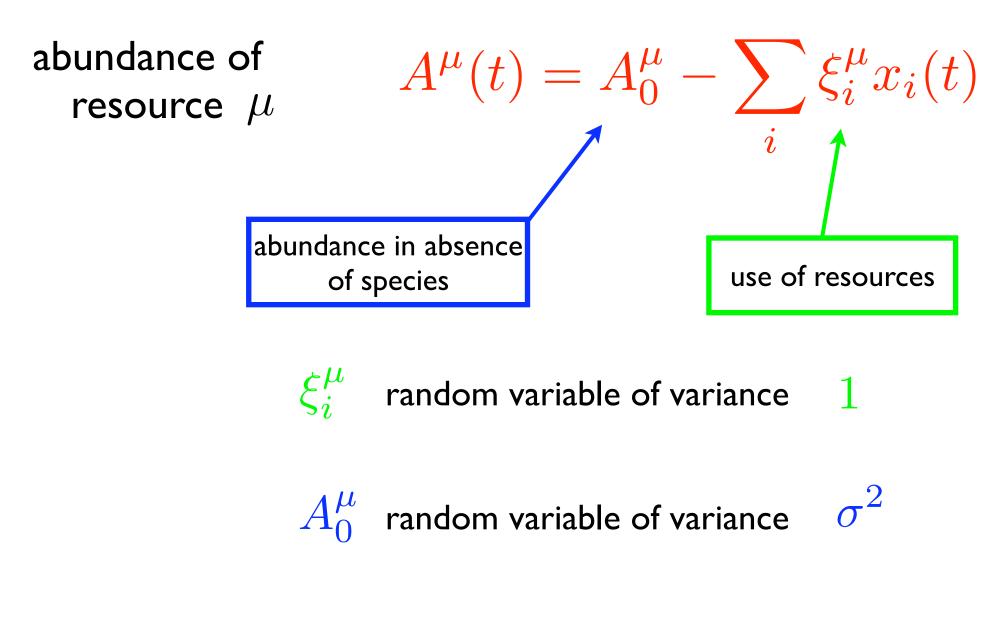


## Model definitions

two 'trophic levels':

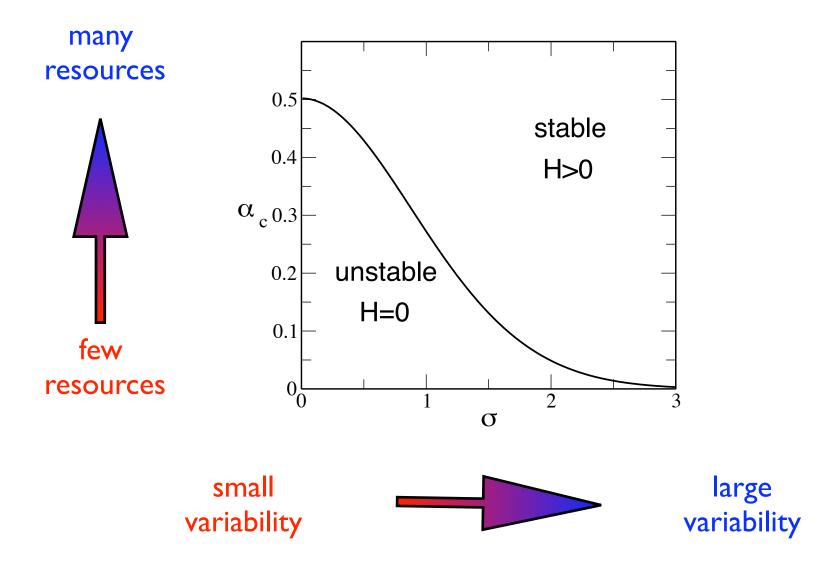
 $i = 1, \ldots, N$ N species  $\alpha$  $\mu = 1, \ldots, P$ P resources fitness of  $f_i = \sum J_{ij} x_j + \sum \xi_i^{\mu} A^{\mu}$ species i μ direct interaction use of resources between species abundance of  $A^{\mu}(t) = A^{\mu}_{0} - \sum \dot{\xi}^{\mu}_{i} x_{i}(t)$ resource  $\mu$ 

## Model definitions

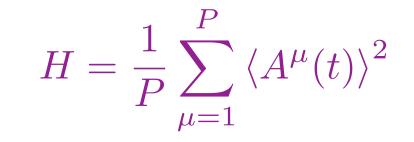


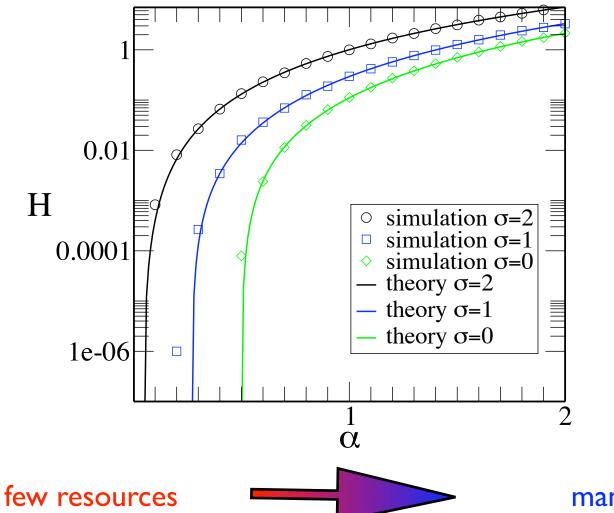
[see also A De Martino and M Marsili J. Phys. A 39 R465 (2007)]

# E.g. phase diagram in dependence of number of resources and their variability



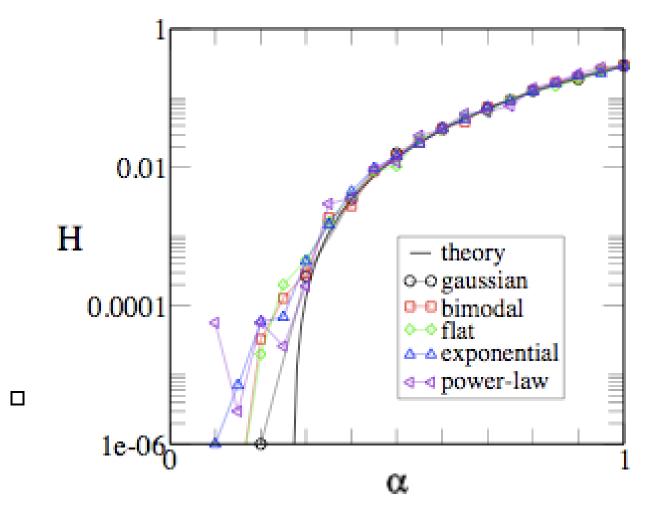
## Use of resources



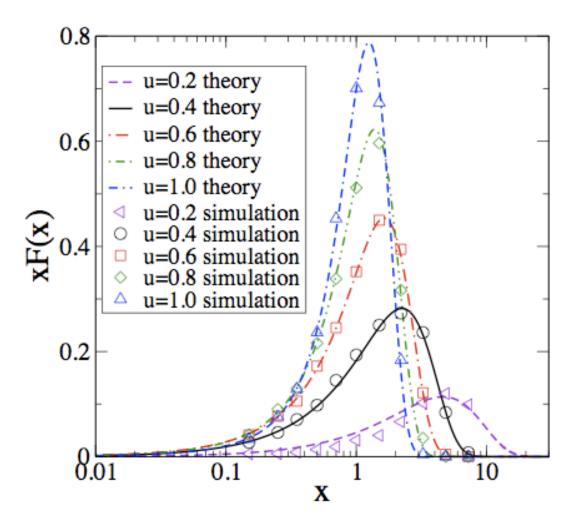


many resources

## Robustness of the model: distribution of species-resource couplings



#### Species abundance distributions in replicator models



[Yoshino, Galla, Tokita, PRE (2008) to appear] [Tokita, PRL 2004]

### Conclusions

 used techniques from statistical physics used to study replicator systems with random interaction matrices

transition between ergodic-stable and non-ergodic-unstable phase

order parameters computable in stable regime

extension to simple model-eco system with two trophic levels

phases with perfect exploitation of resources