
Motivation Definitions Degree Distance Clustering Communities Random Hypergraph model Advertisement Conclusions

Random Hypergraphs and their applications
Study of topology in tagged social networks

G. Ghoshal1 M.E.J. Newman1 V. Zlatić2
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Overview

I want to present a way to describe objects more
complicated than networks
This applies to

"tagged" (essentially social) networks
interacting networks
interconnected networks

This is done with a generalization of graphs known as
"hypergraphs" 1, 2

1G. Ghoshal, V. Zlatić, GC, M.E.J. Newman PRE 80 036118 (2009)
2G. Ghoshal, V. Zlatić, GC PRE 79 066118 (2009)
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Tagged Networks

Delicious site
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Tagged Networks

Citeulike site
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Tagged Networks

Flickr site
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Basics

Think Hypergraph!

Hypergraph describe these systems in a compact way.

U1 U2

R T

Hypergraph Basic Unit

The typical structure that you have in these systems is a triple

A red vertex for the user (people)
A green vertex for the resource (paper, picture)
A blue vertex for the tag ("Graphs", "vacation" etc)
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Basics

Hypergraph theory
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Hypergraphs are
generalization of graphs,
Hyperedges are arbitrary
set of vertices
Tagged systems are
3-uniform hypergraphs
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Topological quantities

Hypergraphs and hyperedges

U

R T

Following color code we have
U-R yellow edge between a red vertex and a green vertex
U-T magenta edge between a red vertex and a blue vertex
R-T cyan edge between a green vertex and a blue vertex
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Topological quantities

Projections

IBA JDC E F G H

A
B

C

D

E

F

G

H

I

J

One approach is“to project" this
triple structure along one of the
three components.
Similarly to bipartite graphs of
collaborations for ordinary
graphs.
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Topological quantities

Hypergraph Projections

Hypergraphs can also be
projected, but it is more
interesting to consider them as
a whole
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Topological quantities

We define here:
degree as the number of hyperedges neighbour
distance as the number of hyperedges to travel
clustering as the triples of hyperedges
communities by considering the set of common
hyperedges between vertices
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Degrees

Two generalizations are possible from Graph Theory

for a vertex/edge we count the
hyperedges it participates in.

for an hyperedge we count the
hyperedges neighbours
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Degrees

Expected values

The mean degree 〈kr 〉 of a red vertex in our network is given by
the number of hyperedges in the network divided by the
number of red vertices, and similarly for green and blue:

〈kr 〉 =
M
nr

, 〈kg〉 =
M
ng

, 〈kb〉 =
M
nb

.

Rearranging these equations we can write:

nr 〈kr 〉 = ng〈kg〉 = nb〈kb〉 = M.

Thus the mean degrees of the different vertex types cannot be
chosen independently, but are linked via the fact that the same
hyperedges connect to the red, green and blue vertices
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Degrees

Degree sum rules

We have three degree distributions:
pr (k) as the fraction of red vertices with degree k ,
pg(k) the fraction of green vertices with degree k
pb(k) the fraction of blue vertices with degree k

These distributions satisfy the sum rules
∞∑

k=0

pr (k) =
∞∑

k=0

pg(k) =
∞∑

k=0

pb(k) = 1,

and
∞∑

k=0

kpr (k) = 〈kr 〉,
∞∑

k=0

kpg(k) = 〈kg〉,
∞∑

k=0

kpb(k) = 〈kb〉.
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Hyperedges

Hyperedges degree I

We define the degree of the hyperedges as the number of
neighbours of a given hyperedge

Hyperedges degree

The number hh of neighbour of a given hyperedge can be
obtained by the previous quantities

h ≡ kr + kg + kb − kc − ky − km
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Hyperedges

Hhyperedges degree II

Let P(h) represent the fraction of hyperedges connected to
exactly hh other hyperedges.
In the absence of correlations between the degrees of the
vertices and the edges we have

P(hh) =
∑

kr ,kg ,kb,kc ,km,ky
P(kr )P(kg)P(kb)P(kc)P(km)P(ky )

·Θ(kr − km − ky )Θ(kg − kc − ky )
·Θ(kb − km − kc)δhh,kr +kg+kb−kc−km−ky

Θ(x) is the Heaviside’s step function
δx ,y is the Kronecker’s delta.
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Hyperedges

Number of hyperedges per vertex/edge in Citeulike
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Hyperedges

Number of hyperedges per vertex/edge in Flickr

The absence of points for cyan edge (resource-tag) is because
tags in Flickr are public and this prevents redundant tagging.
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Hyperedges

Number of hyperedges per hyperedge in Citeulike
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Hyperedges

Number of hyperedges per hyperedge in Flickr

100 101 102 103 104 105

10!12

10!15

10!9

10!6

10!3

hh

P(
hh
)

 

 

Flickr
Expected

Guido Caldarelli CNR Institute of Complex Systems, Dep. Physics Sapienza University, Rome Italy

Hypergraphs and tagged social networks



Motivation Definitions Degree Distance Clustering Communities Random Hypergraph model Advertisement Conclusions

Distance

Distance I

Different possible choices
For vertices/edges

minimal number of hyperedges
which connect vertices/edges
minimal number of edges
between the vertices/edges
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Distance

Distance II
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Clustering

Clustering I

In this case again we can use hyperedges to address the
connections between vertices.

Coordination number

We introduce the coordination number z as the number of
immediate neighbors of any color that are connected to it via
regular edges
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Clustering

Clustering II

Two immediate bounds can be computed
Upper bound zmax = 2h where h is the number of
hyperedges it belongs to
Lower bound zmin ≈ 2

√
h

zmin =

{
2n if n(n − 1) ≤ h ≤ n2

2n + 1 if n2 ≤ h ≤ n(n + 1)

Guido Caldarelli CNR Institute of Complex Systems, Dep. Physics Sapienza University, Rome Italy
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Clustering

Clustering III

Based on the coordination number defined above for a vertex of
degree k , we define a local measure of overlap or clustering,

Hyperedge density

the hyperedge density Dh(k):

Dh(k) =
zmax − z

zmax − zmin
.
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Data

Hyperedges Density in Data

On the left Citeulike network, on the right the Flickr one.
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Community structure

Among the various possible methods we clustered together
similar vertices

Vertex Similarity

we can define a vertex “distance” as

d(v1, v2) =
(N1 ∪ N2)− (N1 ∩ N2)

(N1 ∪ N2) + (N1 ∩ N2)
,

where N1 and N2 are neighbors of the vertices v1 and v2
respectively.

and then connect all the vertices below a certain threshold

Guido Caldarelli CNR Institute of Complex Systems, Dep. Physics Sapienza University, Rome Italy
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Data

Communities II
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Theory and Generating Functions

Hypothesis

Consider a model hypergraph with nr red vertices,
ng green vertices, and nb blue vertices; all with
〈kr 〉, 〈kg〉, 〈kb〉 mean degree(respectively).
Each vertex is assigned a degree, corresponding to the
number of hyperedges it will have, these degrees can be
thought as “stubs”.
A total of m three-way hyperedges are now created by
choosing trios of stubs uniformly at random, one each from
a red, green, and blue vertex, and connecting them to form
hyperedges.

nr 〈kr 〉 = ng〈kg〉 = nb〈kb〉 = M.
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Theory and Generating Functions

Expected values

Given that there are m hyperedges in total, the overall
probability of a hyperedge between i , j , and k is then

Pijk = M × ki

M
×

kj

M
× kk

M
=

kikjkk

M2 .

Via a similar argument, the probability that there is a hyperedge
connecting a particular red/green pair i , j (or any other color
combination) is ki kj

M
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Theory and Generating Functions

Excess degree distribution

We are interested in the probability that by following an
hyperedge you end up in a vertex involved in other k
hyperedges other than the one we followed.
(i.e. Excess degree= degree-1)

qr (k) =
(k + 1)pr (k + 1)

〈kr 〉
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Theory and Generating Functions

Generating Functions I

We begin by defining generating functions for the degree
distributions

r0(z) =
∞∑

k=0

pr (k)zk

We now define the generating functions for the excess degree
distributions:

r1(z) =
∞∑

k=0

qr (k)zk =
1
〈kr 〉

∞∑
k=0

(k + 1)pr (k + 1)zk =
r ′0(z)

r ′0(1)

and similarly for b and g
Guido Caldarelli CNR Institute of Complex Systems, Dep. Physics Sapienza University, Rome Italy
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Theory and Generating Functions

Generating Functions II

Projections

The Generating Functions can be used to compute the degree
distribution on projected graphs.

I.e. take a red vertex A
it has s green neighbours (s distributed as pr (s))
any of the s has ts red neighbours (apart from A and t
following qg(t)).

the probability that A has k neighbours in the projection is

ρg(k) =
∞∑

s=0

pr (s)
∞∑

t1=0

qg(t1)....
∞∑

ts=0

qg(ts)δ

(
k ,

∞∑
s=0

pr (s)

)
Guido Caldarelli CNR Institute of Complex Systems, Dep. Physics Sapienza University, Rome Italy
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Theory and Generating Functions

Projections II

Multiplying by zk and summing over k we have

Rg(z) =
∞∑

k=0

zkρg(k)

that becomes

Rg(z) = r0[g1(z)]
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Multiplying by zk and summing over k we have

Rg(z) =
∞∑

k=0

zkρg(k)

that becomes

Rg(z) = r0[g1(z)]
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Random Hypergraph model

Theory and Generating Functions

Projections II

Rg(z) =
∑∞

k=0 zk ∑∞
s=0 pr (s)

∑∞
t1=0 qg(t1) . . .

∑∞
ts=0 qg(ts) δ

(
k ,
∑s

n=1 tn

)
=

∑∞
s=0 pr (s)

∑∞
t1=0 qg(t1) . . .

∑∞
t1=0 qg(ts)z

Ps
n=1 tn

=
∑∞

s=0 pr (s)
∑∞

t1=0 qg(t1)z t
1 . . .

∑∞
t1=0 qg(ts)z ts

=
∑∞

s=0 pr (s)
[∑∞

t=0 qg(t)z t
]s

= r0[g1(z)]
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Theory and Generating Functions

Projections III

We can generalize to two red vertices connected if they share
either a green or a blue neighbor.

ρgb(k) =
∑∞

s=0 pr (s)
∑∞

t1=0 qg(t1) . . .
∑∞

ts=0 qg(ts)

×
∑∞

u1=0 qb(u1) . . .
∑∞

us=0 qb(us) δ

(
k ,
∑s

n=1(tn + un)

)
and the generating function is

Rg(z) =
∞∑

k=0

zkρgb(k) = r0[g1(z)b1(z)]
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Theory and Generating Functions

Projections III

Rgb(z) =
∑∞

k=0 zk ∑∞
s=0 pr (s)

∑∞
t1=0 qg(t1) . . .

∑∞
ts=0 qg(ts)

×
∑∞

u1=0 qb(u1) . . .
∑∞

us=0 qb(us) δ

(
k ,
∑s

n=1(tn + un)

)
=

∑∞
s=0 pr (s)

[∑∞
t=0 qg(t)z t

]s[∑∞
u=0 qb(u)zu

]s

= r0(g1(z)b1(z)).
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Theory and Generating Functions

Scale-free Graphs

We use generating function to compute the Degree distribution
in particular

Degree from Generating Functions

pk =
1
k !

dkRgb

dzk |z=0
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Comparison with real data

Random Graph

Consider a tripartite random graph with Poisson degree
distributions thus:

pr (k) = e−〈kr 〉 〈kr 〉k

k !
, pg(k) = e−〈kg〉 〈kg〉k

k !
, pb(k) = e−〈kb〉 〈kb〉k

k !
,

The generating function for this distribution is given by

Rgb = r0(g1(z)b1(z)) = e〈kr 〉(e(〈kg〉+〈kb〉)(z−1)−1).
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Comparison with real data

Random Graph

Expanding in powers of z, we then find that the
probability ρgb(k) of a red vertex having exactly k neighbors in
the projected network is

ρgb(k) =
(〈kg〉+〈kb〉)k

k! e〈kr 〉(e−(〈kg〉+〈kb〉)−1)

×
∑k

m=1

{
k
m

} [
〈kr 〉e−(〈kg〉+〈kb〉)

]m
,

where
{ k

m

}
is a Stirling number of the second kind, i.e., the

number of ways of dividing k objects into m nonempty sets
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Comparison with real data

Random Graph Results

The degree distribution for the projection of the Poisson
hypergraph onto its red vertices alone.
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Comparison with real data

Scale-free Graphs Data

Experimentally the distributions are power-law
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Comparison with real data

Scale-free Graphs Results
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Positions

http://www.focproject.net

Financial Networks

Try to forecast avalanches and
decide who’s to bail out

CNR (Rome),
U. Marche (Ancona, I),
ETH (Zürich, CH),
CITY (London Uk),
Said Business School
(Oxford UK),
FBM (Barcelona, SPAIN),
ECB (Frankfurt, EU)
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Advertisement nr. 2

Networks in Cell Biology

Edited by Mark Buchanan,
Guido Caldarelli, Paolo De Los
Rios, Francesco Rao, Michele
Vendruscolo
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Summary

We can describe tagged networks as hypergraphs, that is
graphs where an hyperedge connects more than one
vertex.
This natural description allows to detect deviation from
random hypergraph model used as a reference null case.
We find correlations between vertices not described by the
simple degree distributions.

Outlook
Generalize the approach to interacting networks not
composed by regular triples
Explore the fragility issues based on hyperedges analysis
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