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Overview

m | want to present a way to describe objects more
complicated than networks
m This applies to
m "tagged" (essentially social) networks
m interacting networks
m interconnected networks
m This is done with a generalization of graphs known as
"hypergraphs" 1- 2

'G. Ghoshal, V. Zlati¢, GC, M.E.J. Newman PRE 80 036118 (2009) (@]
2G. Ghoshal, V. Zlatié¢, GC PRE 79 066118 (2009)
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Tagged Networks

Citeulike site
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Tagged Networks

Flickr site
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Motivation
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Basics

Think Hypergraph!

Hypergraph describe these systems in a compact way.

i
Hypergraph Basic Unit

The typical structure that you have in these systems is a triple

m A red vertex for the user (people)
m A green vertex for the resource (paper, picture) C
m A blue vertex for the tag ("Graphs", "vacation" etc) Q
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Motivation

oe
Basics

Hypergraph theory

m Hypergraphs are
generalization of graphs,

m Hyperedges are arbitrary
set of vertices

m Tagged systems are
3-uniform hypergraphs
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Definitions
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Topological quantities

Hypergraphs and hyperedges

Following color code we have
[ between a red vertex and a green vertex
m U-T magenta edge between a red vertex and a blue vertex
m R-T cyan edge between a green vertex and a blue vertex

@
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[e] le]e}

Topological quantities

Projections

One approach is“to project” this
triple structure along one of the
three components.

Similarly to bipartite graphs of
collaborations for ordinary
graphs.
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Definitions
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Topological quantities

Hypergraph Projections

Hypergraphs can also be

projected, but it is more

interesting to consider them as
* a whole
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Definitions
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Topological quantities

We define here:
m degree as the number of hyperedges neighbour
m distance as the number of hyperedges to travel
m clustering as the triples of hyperedges

m communities by considering the set of common
hyperedges between vertices
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Degree
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Degrees

Two generalizations are possible from Graph Theory

for a vertex/edge we count the
hyperedges it participates in.

for an hyperedge we count the
hyperedges neighbours
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Degree
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Degrees

Expected values

The mean degree (k;) of a red vertex in our network is given by
the number of hyperedges in the network divided by the
number of red vertices, and similarly for green and blue:

M M M
k=D (k) =p (=T
Rearranging these equations we can write:
nr(kr) = ng(kg) = Np(kp) = M.

Thus the mean degrees of the different vertex types cannot be
chosen independently, but are linked via the fact that the same
hyperedges connect to the red, green and blue vertices G
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Degree
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Degrees

Degree sum rules

We have three degree distributions:
m p,(k) as the fraction of red vertices with degree k,
m p,(k) the fraction of green vertices with degree k
m pp(k) the fraction of blue vertices with degree k
These distributions satisfy the sum rules

D opr(k) =Y pg(k) = po(k) =1,
k=0 k=0 k=0

and
kpr(k K , kop(K) =
E Pr(k) = § Pg(k (Kg) k§o Pb(K) C
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Degree
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Hyperedges

Hyperedges degree |

We define the degree of the hyperedges as the number of
neighbours of a given hyperedge

Hyperedges degree

The number hh of neighbour of a given hyperedge can be
obtained by the previous quantities
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Degree
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Hyperedges

Hhyperedges degree |l

Let P(h) represent the fraction of hyperedges connected to

exactly hh other hyperedges.
In the absence of correlations between the degrees of the

vertices and the edges we have

P(hh) = >k kykorke,kmky P(Kr)P(Kg) P(kp) P(ke) P(km)P(ky)
‘O (kb — km — Kc)Ohh,ke+kg-+ky—ke—km—k;

m O(x) is the Heaviside’s step function
W Jyy is the Kronecker’s delta. @
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Degree
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Hyperedges

Number of hyperedges per vertex/edge in Citeulike
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Degree
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Hyperedges

Number of hyperedges per vertex/edge in Flickr
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The absence of points for cyan edge (resource-tag) is because
tags in Flickr are public and this prevents redundant tagging. @
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Degree
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Hyperedges

Number of hyperedges per hyperedge in Citeulike

o CiteUlike
o = Expected
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Degree
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Hyperedges

Number of hyperedges per hyperedge in Flickr
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Distance
[ ]

Distance

Distance |

Different possible choices
For vertices/edges
m minimal number of hyperedges
which connect vertices/edges

m minimal number of edges
between the vertices/edges
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Distance

Distance

Distance I
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Clustering
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Clustering

Clustering |

In this case again we can use hyperedges to address the
connections between vertices.

Coordination number

We introduce the coordination number z as the number of
immediate neighbors of any color that are connected to it via
regular edges
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Clustering
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Clustering

Clustering Il

Two immediate bounds can be computed

m Upper bound z,ax = 2h where h is the number of
hyperedges it belongs to

m Lower bound z,j, ~ 2vh

Lo 2n  if n(n—=1)<h<nm?
M 2n+1 if P <h<n(n41)

Guido Caldarelli CNR Institute of Complex Systems, Dep. Physics Sapienza University, Rome Italy

Hypergraphs and tagged social networks



Clustering
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Clustering

Clustering Il

Based on the coordination number defined above for a vertex of
degree k, we define a local measure of overlap or clustering,

Hyperedge density

the hyperedge density Dy(k):

V4 —Z
Dh(k) — max

Zmax — Zmin
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Clustering
[ ]

Data

Hyperedges Density in Data
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On the left Citeulike network, on the right the Flickr one. @
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Communities

Community structure

Among the various possible methods we clustered together
similar vertices

Vertex Similarity

we can define a vertex “distance” as

(N1 UN) — (N1 N2)

dlvi, ve) = (N3 UN2) + (Ny N NR)’

where N; and N, are neighbors of the vertices v4 and v»
respectively.

and then connect all the vertices below a certain threshold @
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Communities
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Data

Communities I
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Random Hypergraph model
[ Jeleleleleele)

Theory and Generating Functions

Hypothesis

m Consider a model hypergraph with n, red vertices,
ng green vertices, and ny, blue vertices; all with
(kr), (kg), (kp) mean degree(respectively).

m Each vertex is assigned a degree, corresponding to the
number of hyperedges it will have, these degrees can be
thought as “stubs”.

m A total of mthree-way hyperedges are now created by
choosing trios of stubs uniformly at random, one each from
a red, green, and blue vertex, and connecting them to form
hyperedges.

Ny (kr) = ng(kg) = Np(kp) = M. (@]
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Random Hypergraph model
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Theory and Generating Functions

Expected values

Given that there are m hyperedges in total, the overall

probability of a hyperedge between i/, j, and k is then
ki kK ke @ kikikg

Via a similar argument, the probability that there is a hyperedge

connecting a particular red/green pair i, j (or any other color

combination) is %
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Random Hypergraph model
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Theory and Generating Functions

Excess degree distribution

We are interested in the probability that by following an
hyperedge you end up in a vertex involved in other k
hyperedges other than the one we followed.

(i.e. Excess degree= degree-1)

(k+1)pr(k+1)
{kr)

Qr(k) =
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Random Hypergraph model
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Theory and Generating Functions

Generating Functions |

We begin by defining generating functions for the degree
distributions

n(2) = prlk)zt
k=0

We now define the generating functions for the excess degree
distributions:

S s %(2)
r(z) = kz;) ar(k)z = " kz;)(k +1)pr(k+1)2" = ,2(1 )

and similarly for b and g
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Random Hypergraph model
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Theory and Generating Functions

Generating Functions Il

Projections

The Generating Functions can be used to compute the degree
distribution on projected graphs.

l.e. take a red vertex A
m it has s green neighbours (s distributed as p;(s))
m any of the s has f; red neighbours (apart from A and t
following qqg(t)).
the probability that A has k neighbours in the projection is

= ;Pr Z Qq(t1)-- Z g(1s)0 <kasz_(:)Pr(3)> @
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Random Hypergraph model
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Theory and Generating Functions

Projections |l

Multiplying by z¥ and summing over k we have

Ry(2) =) Z¥pq(k)
k=0
that becomes

Ry(2) = ro[91(2)]
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Hypergraphs and tagged social networks
Random Hypergraph model

Muipying by 2* and summing over k we have

Theory and Generating Functions =54t
atscames

- Projections Il Ao = e

R2) = ioz SXop(o)Siou(t) . Tio ot ok T t)
= YaoPr(8) Y rto qo(t) - Yopry Qglts)z2n1 b
= Y eloPr(8) Yo ()2 o >0 Go(ts)Z®
= YesoPr(8) X2 ag(8)Z']
= 1o[g1(2)]



Random Hypergraph model
00000080

Theory and Generating Functions

Projections Il

We can generalize to two red vertices connected if they share
either a green or a blue neighbor.

pab(K) = a2 Pr(8) X b0 g(th) - > rzo Ag(ls)
T o) %(us)a(k, 2221(tn+un))

and the generating function is

ZZ pgb(k) = 10[g1(2)b1(2)]
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Random Hypergraph model
Theory and Generating Functions
LProjections 1}

Fol2) = 3 2 ponlk) = ol (2)n(2)]
=)

Rep(2) = Yplo 22 eZopPr(S) > rzoGg(t) - > r o 9g(ts)
XS0 0a(en) . S5 o) 5K S5+ )

S

Z:o:o pr(s) [Zzo qg(t)zt] [ZT:O Qb(u)zu]
ro(91(2)b1(2)).




Random Hypergraph model
0000000e

Theory and Generating Functions

Scale-free Graphs

We use generating function to compute the Degree distribution
in particular

Degree from Generating Functions

Pk = ldkRgb
k! dzk |z=0
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Random Hypergraph model
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Comparison with real data

Random Graph

Consider a tripartite random graph with Poisson degree
distributions thus:

ke (KK ko) (kYK ke (Kp)E
pr(k) = e~ B8 pithy = et B () = ot (81

The generating function for this distribution is given by

Ry = fo(g1(2)b(2)) = etkn(e o701
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Random Hypergraph model
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Comparison with real data

Random Graph

Expanding in powers of z, we then find that the
probability pgp(k) of a red vertex having exactly k neighbors in
the projected network is

pan(k) = ((kg>Jl:(kb))k olkr) (e~ (ke +ko)) _1)

xSk {r’;} [(kye (ko) (ko)) ™

where { X1 is a Stirling number of the second kind, i.e., the
number of ways of dividing k objects into m nonempty sets
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Random Hypergraph model
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Comparison with real data

Random Graph Results
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The degree distribution for the projection of the Poisson
@

hypergraph onto its red vertices alone.
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Random Hypergraph model
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Comparison with real data

Scale-free Graphs Data

1 10 100 1000

Experimentally the distributions are power-law
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Random Hypergraph model
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Comparison with real data

Scale-free Graphs Results

Plk)

Pk

100 1000
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Positions
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http://www.focproject.net

Financial Networks

Try to forecast avalanches and
decide who’s to bail out
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Conclusions

Summary

m We can describe tagged networks as hypergraphs, that is
graphs where an hyperedge connects more than one
vertex.

m This natural description allows to detect deviation from
random hypergraph model used as a reference null case.

m We find correlations between vertices not described by the
simple degree distributions.

m Outlook

m Generalize the approach to interacting networks not
composed by regular triples
m Explore the fragility issues based on hyperedges analysis @
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