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Social networks in communities, markets, and societies self-organise through the interactions of many 
individuals. In this paper we use a well-known mechanism of social interactions -the balance of 
sentiment in triadic relations-  to model the evolution of social networks. Our model contrasts with 
many existing network models, in that people not only establish but also break up relations while the 
network evolves. The procedure generates several interesting network features such as a variety of 
degree distributions and degree correlations. The resulting network converges under certain conditions 
to a steady critical state where temporal disruptions in triangles follow a power-law distribution. 
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I. Introduction 

Complex systems like organisations and organisms often take the form of networks –sets of actors, 
cells or other units tied together by edges. To explain the behaviour of complex systems, network 
models have been developed in many fields, for example, in physics, biology, operational research, 
economics, and sociology [1, 2]. Most of these models reproduce the observed properties of biological 
and technical networks well but provide less accurate description of social networks. The reason for 
this could be that people -unlike cells or particles- pursue individual goals that are mostly responsible 
for their social contacts [3]. These goals affect the network but are also affected by the network [4]. 
The goals as well as the network are not static but co-evolve over time.  
Of course, several general principles of network construction could apply in the social as well as in the 
physical domain [1]. Take, for example, three fairly common growth principles of networks: random 
attachment, preferential attachment, and age-driven removal. Random attachments might happen 
within groups of people with no previous contacts at all (say, on a cruise). Preferential attachment 
could be at work when people with a larger number of friends tend to acquire new friends more readily 
(evoking the Mathew effect: “For to every one that hath shall be given”). Age-driven removals take 
place as people die or fall into oblivion (for example, forgotten High School friends). These principles 
surely play a role in the emergence of social networks; however, they only describe wholesale 
phenomena, insensitive to individuals’ goals. For example, a person might rather choose to contact a 
less popular person if his position in the social network makes it preferential to do so.  
How then can we extract a feasible construction principle out of the myriad of individual goals in 
social groups? Sociology offers at least two findings: the locality principle and structural balance. The 
locality principle describes the fact that people mostly choose their social contacts based on their local 
information of the network [3]. For example, people might become acquainted with each other through 
the introduction by a common friend. Using this argument, [5] simulated the evolution of social 
networks by randomly linking up neighbouring nodes. Such an introduction mechanism alone, 
however, does not take into account two other cornerstones of social life: the quality of dyadic 
relations (Do two people like/dislike each other?) and triadic relations (Do two people compete for the 
attention, co-operation, etc. of the third person?). These two aspects of social interactions are major 
drivers of social choice and at the heart of another classic in Sociology, Structural Balance Theory.  
 Structural Balance Theory evolved from the work of [6] and describes a social selection 
process in people’s minds. According to this theory, people establish dyadic relations that each side 
equivalently perceives as either positive or negative. If three persons form a triadic relation they 
perceive it as either “balanced” or “imbalanced”, depending on the number of positive and negative 
relations in the triangle (see FIG. 1). 
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FIG. 1: Positive (+) and negative (-) sentiments in triangle 
relations and the respective triangle type. 

 
A balanced triangle exists if either one or all of the three relations are positive, that is, if “my friend’s 
friend is my friend”, or “my enemy’s enemy is my friend”, or “my enemy’s friend is my enemy”, or “my 
friend’s enemy is my enemy”. An imbalanced triangle, in contrast, occurs in all other constellations, 
that is if either two or none of the three relations are positive. Imbalanced triangles provoke unease 
and force people towards more balanced constellations that could involve a re-organisation of the 
entire network [7]. These effects of triadic relations have been confirmed in several empirical studies 
[8, 9]. It, thus, seems reasonable to use the balance of sentiment in triadic relations as a construction 
principle for social networks. 

In the following we introduce a network model that is based on the insights of balance theory 
as well as the locality principle. To model the network growth accordingly, we randomly attach 
positive and negative edges to a given set of nodes. For each node, we keep track of the number of 
unbalanced triangles. Once a node reaches a certain threshold of unbalance sentiments, we remove its 
links at random one after the other until the threshold is not exceeded. This process in turn might cause 
other nodes to become too imbalanced so that the re-balancing process cascades until all nodes are 
sufficiently balanced again. 
 
We first show how to model such a network’s evolution and then analyse when the evolution process 
converges towards a state of self-organised criticality. The concept of self-organised criticality in 
social sciences and especially in networks is rather new [10]. We here define a network’s self-
organised criticality as a statistical steady state where the average number of added and removed links 
(or triangles) per time step is equal, and the distribution of triangle removals in a given time unit is 
scale-invariant [11,12]. The properties of networks in self-organised criticality will be reported later in 
the article. 
 
 

II.   Model of network evolution 

Consider a set of nvertices (that is, persons) that are subsequently linked with each other. At each 
time step t  a single symmetric positive or negative link is established at random between two directly 
unconnected vertices. The likelihood of a link’s quality (positive or negative) depends on a 
friendliness index1 1α− ≤ ≤  so that the probability of a positive link is 12

α + . Accordingly (see FIG. 1), 

the probability of a randomly chosen triangle being balanced (respectively unbalanced) is 
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If we have, for example, 0.4α = , then 70% of newly introduced links are positive and 
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in the network shifts only slightly as the friendliness index varies between 0.5 0.5α− ≤ ≤ . It is only 
for extreme values for α  that the mix of triangles changes dramatically. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now consider a uniformly distributed threshold parameter 1 1β− ≤ ≤  that indicates the quantity of 
imbalanced triangles that is just tolerated by an agent. We compare β  with a vertex i ’s balance index 
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, where +
△  and −

△  are the number of balanced and imbalanced triangles running 

through the vertex. Hence, a vertex i  stays inert as long as iβ ϕ≥ , and becomes unbalanced 

otherwise. After a new link is added to the network, all iϕ  of the network are calculated in a random 
sequence. If a vertex i  exceeds the threshold β , one of its links is randomly removed and its balance 

index iϕ  is recalculated. If this vertex is still unbalanced the procedure continues until it is balanced 

again. Now all remainingiϕ  are again determined in the same sequence as before, and the procedure 
goes on for each unbalanced vertex until all vertices are sufficiently balanced again. Only then a new 
link is attached to the network.  
It could be argued that an agent does not randomly remove one of his links but rather tries to abandon 
the link that adds most to the unbalanced condition. To do this, however, the agent has to closely keep 
track of each link’s triangle contributions, which seems to be a daunting, if not impossible task for 
networks of any complexity. Hence, random link removals are quite plausible, especially if they are 
interpreted as an actor’s attempt to become more restrained in general.  

The network’s evolution proceeds either until the network contains the maximum number of 
potential links ( 1) / 2n n−  [13], or until a predetermined number of time steps is reached. For each 
time step, we measure several network properties, the number of link removals as well as number and 
type of triangle removals.  
 

III.   Settings for the network’s evolution 

Three types of networks occur in the simulations: dense, semi-sparse, and sparse networks (see FIG. 
3). In dense networks the number of triangles tΞ and links tE at time step t  quickly grows, partly 
interrupted by little cascades of break-ups, until the network becomes complete at or soon after 

( 1) / 2t n n= −  is reached. Sparse networks hardly have any triangles and accumulate only a relative 

small number of links up to a certain level around which both tΞ  and tE  fluctuate. Semi-sparse 
networks have a similar growth pattern to sparse networks; however, the level around which their 
number of triangles and links fluctuate is significantly higher than in sparse networks.  
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FIG. 2: Probabilities for positive links and 
balanced triangles in the network for 
different values of α . If 0,α =  both 
probabilities are 50%. 
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The type of network depends on both the friendliness index and the (assumed) uniform balance 
threshold in the population. To investigate the “space of networks” we vary the friendliness index and 
the balance threshold for representative values. In each constellation, the network size is 60n = and 
the duration of the evolution is max 1,700,t =  to be well before the time 60 59 / 2 1,770t = × =  when the 

network could become complete. We measure the average number of links between max1,600 t t< ≤  

and repeat this procedure 4 times to calculate the average number of edges E over all four network 
evolutions (see FIG. 4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For each friendliness index α  we obtain a different function between the balance threshold and the 
average number of links. For 1.0α = , the network has the maximum number of 1,700 links regardless 
of the balance threshold as a new link is added at each time step and no break-ups occur. These cases 
are thus equivalent to the classical random graph model (also called ER-model) [14]. The same ER-
network is in place for 1,β = −  when the population tolerates an unlimited number of negative triads. 
If  1.0α = − , the network contains 1,700 links when 1β = − , but only about 145 links for most other 
balance thresholds. A special combination is 1.0α = −  and 1β =  where no triangles exist at all and 

the network only features tree graphs. For all other values of ,α  we find similar functions between 

β and E , each featuring a phase of dense, semi-sparse, and sparse networks. 
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In the first phase the network is dense and contains only slightly less than 1,700 links. As the balance 
threshold becomes more positive, the network’s number of links strongly decreases and the networks 
become semi-sparse. Beyond a certain degree of intolerance (balance threshold), however, the number 
of links is very low and decreases only slightly so that only sparse networks come into place. Hence, it 
seems that two different phase transitions separate dense from semi-sparse networks and semi-sparse 
from sparse networks. In “high tolerance settings”, the networks are dense and quickly become 
complete. The “low tolerance settings”, in contrast, result in sparse networks throughout the network’s 
evolution, while “medium tolerance” leads to semi-sparse networks. 
We can offer the following explanations for the phase transitions’ boundary conditions. Let us first 

take into account the probability for a balanced triangle 
31

2BP α+=  and the minimum proportion of 

balanced triangles required by the network’s members 1
2 .β+ The transition from dense to semi-sparse 

networks appears to take place if the probability for a balanced triangle is lower than the required 
share of balanced triangles: 
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Otherwise the probabilityU that a node retains an unbalanced triangle at time step t  quickly increases 

from 
31

2UU P α−= =  at 0t = to 1U =  so that the network becomes dense.  

If 3 ,α β< the probability U is still a function of UP but also depends on the required minimum 

proportion of balanced triangles 12 .β + The latter translates into a required number, ,y of balanced 

triangles that a node has to accumulate before it retains its next unbalanced triangle (unless 1,β = −  so 
that all triangles are tolerated). For this number ,y  it must hold that  
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We then can say that the probability U  is a function ( ; )S α β   
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which is the probability that a randomly chosen set of y triangles created at any time throughout the 

evolution, contains only balanced triangles. A closer look on ( ; )S α β  reveals why a transition 
between semi-sparse and sparse networks seems to take place. In FIG. 5, we plot S for 0α = and y  
against different values of .β   
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Apparently, Sdecreases steadily asβ grows. At a certain value of β (for 0,α =  at about 0.65β = ), 

the probabilityS is close to zero. This follows from the fact that the set size,y , increases dramatically 
beyond 0.65β = . This effect is likely to cause the transition between semi-sparse and sparse 
networks. The exact boundary condition for the transition, however, depends not only onS but also on 
the network size ,n  the duration maxt  of the network’s evolution, and other random effects during the 
evolution. 
To get an idea of the second phase transition’s bound, we measure the number of balanced and 
unbalanced triangles in the network at each time step t ( t

+Ξ and t
−Ξ ), and calculate the average share 

of balanced triangles 
max min

1 t

t t
B t t t

ξ
+

+ −

Ξ
− Ξ +Ξ

= ∑  for a given duration min maxt t t< ≤ . The graph in FIG. 6 

shows Bξ  for { }0.8;0;0.4α = − (simulated for 60n =  and averaged over 100 time steps between 

1,600 1,700t< ≤  and over 30 simulations) against different values of .β  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For lower values of ,β  the share of unbalanced triangles is close to (or exactly, for 1β = ) 

( )31
2 1 α+ as long as 3 .α β≥ In this phase almost all unbalanced triangles are accepted after a 

sufficient number of time steps so that .B BPξ ≈ If 3 ,α β<  the share of balanced triangles goes up 

asβ increases, and approaches 1Bξ∂ = for values of 0.4β = to 0.6.β = For example, the three cases 

{ }0.1;0.4;0.7β =  for 0α =  have a share of balanced triangles of about 65%, 90%, and 100%. 

Interestingly, the shares of balanced triangles in semi-sparse networks are higher for cases of lower 
values of .α Moreover, it becomes clear that a share of balanced triangles 1Bξ∂ ≈ corresponds to sparse 
networks.  
The fact that a very high share of balanced triangles indicates a sparse network allows us to get an 
overview of transitions between semi-sparse and sparse networks across different settings of α and .β   

Let us define the margin 1 0Bε ξ= − ≈  by which the share of balanced triangles in the network is 
lower than 1. This margin is driven by ( ; )S α β , the network size n , the duration of the evolution 

maxt and other random effects during the network’s evolution. If we set everything else constant, we 
can define a sparse network in terms of ε  and ( ; )S α β  where the following holds 
 

 
( )

( )
( )
( )

3

3

1
2

1
2

2 loglog1
( ; ) 1 .

2 loglog
S

α

α

εβα β ε β
ε

+

+

+≤ ⇔ ≤ ⇔ ≤ −  (5) 

All networks whose share of balanced triangles is 1Bξ ε≥ −  are thus defined as sparse. This allows us 
to indicate the boundary condition between semi-sparse and sparse networks for different 
combinations of α and .β  To this end, we simulate networks with 100n = and measure the share of 

balanced triangles for 10,000 30,000.t< ≤  The boundary condition between semi-sparse and sparse 
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networks is then fitted to the data with 0.03ε =  (see FIG. 7). The example networks for 

{ }0, 0.1;0.4α β= = are semi-sparse, while the network for { }0, 0.7α β= = is sparse.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We also show the phase transition between dense and semi-sparse networks as given by (2). At 

max 30,000,t =  all networks with 3α β≥ are complete while most other networks have fewer links. 
However, some of the semi-sparse networks become complete as well. So obviously, the boundary 
conditions are not entirely fixed. As we will see in the next section, the links and triangles of networks 
in and around the semi-sparse area fluctuate considerably during the evolution. This can result in 
sparse networks becoming semi-sparse and semi-sparse networks becoming dense. 
 
 

IV.   Simulating the network’s evolution 

The network’s evolution is interesting in two respects: first, the number of break-ups that occur during 
each time step of the network’s evolution, and second, the corresponding development of network 
traits. To describe the network, we calculate the following properties after each time step t : the 
number of links tE , the number of balanced and unbalanced triangles (t

+Ξ and t
−Ξ ), the share of 

balanced triangles ,
t

t t
B tξ

+

+ −

Ξ
Ξ +Ξ

= , the number of newly formed triangles tdΞ  at the beginning of time 

step t , the break-ups of the number of links and triangles ( 11t t tE E E−∂ = + −  and 

1t t t td −∂Ξ = Ξ + Ξ − Ξ ), the degree distribution ( )tp k , and the degree correlation tr .The degree 

distribution indicates the share ( )p k of vertices with k  links in a network. The degree correlation 
r represents the tendency of network nodes to be connected to nodes of similar degree. It is defined as 
the Pearson correlation coefficient of degrees at either end of a link and assumes values between 

1 1r− ≤ ≤  [17]. 
On a more technical side, there is a balance to be struck between the network’s size nand the 

duration maxt  of the network evolution. While certain network statistics like the distribution of break-
ups per time step clearly require a large network to be meaningful, the running times usually become 
unacceptable for very large networks. However, we can partly capture the behaviour of large networks 
by extending the duration of the evolution (for example, to collect more extreme outliers of break-up 
sizes). It is for these reasons that in the next simulation we run the network’s evolution for 100,000 
time steps with a relatively small network size 60n = . As before, we choose the three standard 
constellations with balance thresholds of { }0.1;0.4;0.7β =  and a friendliness index of 0.α =  

FIG. 8a) and 8b) depicts the relative frequency for a given number of break-ups of triangles 
and, respectively, links during a time step t . The break-up distribution for triangles can be fitted to a 
power-law for semi-dense networks (here: 0.1β =  and 0.4β = ). For example, the power-law 

FIG. 7: Schematic location of sparse, semi-
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3α β=  and the lower boundary condition 
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exponent of the break-up distribution for 0.1β =  is about 1.3. Asβ increases, the power-law exponent 
becomes larger and larger, that is, the power-law distributions become steeper. For sparse networks 
(here: 0.7β = ), the distribution is exponential, as shown in the semi-log plot of the insert in 8a).  

The break-up distributions for links can be fitted to an exponential function [18] whose mean 
is (very close to) 1 as long as the network is non-dense (here, for all three cases{ }0.1;0.4;0.7β = ). In 

other words, the average creation of links equals the destruction in the network in all settings beyond 
the first phase transition. According to our definition, this is an indicator that networks approach a 
state of self-organised criticality.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Simulations of other settings show that break-ups in dense networks hardly occur while break-ups in 
sparse networks are frequent but of limited size. The reason for the latter is that unbalanced networks 
beyond the second phase transition are almost always torn apart upon their creation, which leaves no 
room for the creation of network structures large enough to provoke break-ups at significant scale. So 
it is only in semi-sparse networks, we find that the number of triangle break-ups follows a power-law. 
This condition, of course, only holds if the average number of added and removed links is in 
equilibrium. Before such a state is reached, there is a starting or “build up” phase, as shown in FIG. 9. 
The plot depicts the number of links, triangles, and positive triangles during the evolution of a network 
with 0α =  and 0.1.β =  After the start-up phase is finished after about 1,600 time steps, the number 
of links starts fluctuating around a value that is about 33% of the maximum number of potential links 
( 60 59 / 2 1,770⋅ = ) in this setting.  
The fluctuating state (or “stationary state”) begins the earlier the higher the balance threshold β  is. 
However, its start can be difficult to spot, especially for the number of triangles. As observable in FIG. 
10, the number of triangles approaches the fluctuating state much later and is more volatile than the 
number of links, given that there are many more triangles than links. The swings can be massive even 
for the short period of 10,000 time steps. In our example, there is a decrease of about 30% of triangles 
and of about 15% of links between time steps 6,467 and 6,480. The positive triangles’ trajectory 
mostly moves in parallel to the development of all triangles. However, the share of positive triangles 
decreases until it converges to about 60% of total possible (FIG. 10). 

FIG. 8: The relative frequency distribution of  a) the number of break-ups of triangles t∂Ξ and  b) the 

number of break-ups of links tE∂ in the network during t =10,000 until t=100,000 for { }0.1;0.4;0.7β = . The 

break-up distribution of triangles follow a power-law for 0.1β =  and 0.4β = and an exponential 

distribution for 0.7.β =  The break-up distribution for links seem to follow exponential functions but can 

also be fitted to power-law functions. Simulations with much larger networks are required to confirm this 
judgement. The regressions become less accurate for highly infrequent data points due to the finite size of 
the network and of the network’s evolution. 
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The reason for this decrease is that, as the evolution of the network proceeds, more and more links and 
triangles are located with nodes which by chance have enjoyed a stream of predominantly balanced 
triangles. These “super-balanced” nodes act as a stabilising “buffer” as they increase the network’s 
capacity to absorb negative triangles. The orientation towards “super-balanced” nodes also has a 
strong impact on the development of the degree correlation and degree distribution.  

 

 

 

 

 

 

 

 

 
 
 
 
 

The degree correlation and degree distribution fluctuate throughout the evolutionary process 
and each is quite different in the “start up” phase and the stationary phase. Therefore, we take averages 
over a period of time steps that surely take place in the stationary phase (usually for min 10,000t = until 

max 100,000t = ) and mark mean values by a bar over the respective symbol: the average degree 

correlation is 
max min

1
tt t t

r r−= ∑ and the average degree probability is 
max min

1( ) ( ).tt t t
p k p k−= ∑ Proceeding 

in this way, we can compare different constellations of α and .β   

The degree correlation tr  mostly assumes negative values at the beginning of the network’s 
evolution but finally fluctuates around positive values in semi-sparse networks (see FIG. 11). The 
increase of the degree correlation is again due to the fact that links and triangles gravitate to the 
“super-balanced” nodes. These nodes are less likely to remove links, and thus, on average, tend to be 
linked to each other, resulting in a positive degree correlation tr (“hard core effect”). The “hard core 
effect” increases as the balance threshold increases but disappears after the second phase transition 
sets in. The reason for this on-off phenomenon of degree correlations is that an increasing balance 
threshold, on the one hand, makes the group of “super-balanced” nodes more exclusive and fosters 
links to and between them. On the other hand, it increases the number of nodes who frequently break 
up links and “re-randomise” the network. Both counter-steering trends determine the size of the “hard 
core”. If the “re-randomisation” dominates, as in sparse networks, the degree correlation becomes 
slightly negative. In case of completed networks, the degree correlation is very close to zero, but might 
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FIG. 10: The evolution of ,B tξ  and tr  

during 10,000 time steps for 
0; 0.1α β= = . . The share of positive 

triangles ,B tξ decrease from 1 to a 

stationary value (here, about 0.6). The 
degree correlation first assumes negative 
values before turning positive and 
fluctuating around a positive value. 
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FIG. 9: The evolution of tE , tΞ , and 

t
+Ξ  during 10,000 time steps for 

0; 0.1.α β= =  The number of links is 

in a state of steady criticality after 
about 1,200 time steps, while the 
number of triangles and positive 
triangles reaches the same state some 
time later. When the network becomes 
steady critical, the changes in triangles 
and links can be considerable (see , for 
example, the period shortly before 
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slightly diverge from zero if the network size is relatively small or if a sufficient number of break-ups 
have taken place before the network is completed. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The balance threshold β not only has a strong impact on the degree correlation but also on the degree 
distribution ( ).p k The inset of FIG. 12 shows the degree distribution ( )p k for the three cases of 

{ }0.1;0.4;0.7β = with a network size 60n = . Again, the “hard core effect” is at work: if the balance 

threshold increases, the “super-balanced” nodes gain additional links during the network’s evolution, 
which leads to more varied degrees and thicker right tails of the distribution. At a certain point, the 
“hard core effect” becomes smaller as the “re-randomisation” intensifies. If the balance threshold is 
high enough ( 0.7β =  in the example), the degree distribution seems to converge to a Poisson 
distribution, as in a pure-random graph.  
The average degree moves in parallel to the number of links as shown and reaches a stationary value 
after an initial build-up. This stationary value decreases for higher balance thresholds (see FIG. 4).  
All degree distributions have their mode at rather small degrees and are skewed to the right. For some 
constellations, (see for example, 0.1β = , 60n = ) the degree distribution also displays a local 
maximum for highly connected nodes. This, however, might again be a finite-size effect as it 
disappears for a network with 200n = (see FIG. 12). The simulations with networks of size 

200n = also generate much higher average and maximum degrees and result in more skewed degree 
distributions than in the case of 60n = . These variations of the degree distribution closely affect other 
characteristics of networks, such as the degree variance or the epidemic threshold of the network [2]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We find that the generated degree distributions ( )p k mimic those in the real world strikingly well for 
suitable values of the balance threshold [18]. For example, compare FIG. 12 and, in [18], the degree 

0

0.05

0.1

0.15

0 10 20 30 40 50 60 70

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50

 Beta = 0.1

 Beta = 0.4

 Beta = 0.7
( )p k

( )p k  

k 

k 

0.1β =

0.4β =
 0.7β =
 

FIG. 12: Degree distribution ( )p k  

(averaged over time steps between 
12, 000t =  and 20, 000t = ) for 

{ }0.1;0.4;0.7β =  and a network size 

of 200.n =  
Inset:  Degree distribution ( )p k  

(averaged over time steps between 
3,000t =  and 10, 000t = ) for 

{ }0.1;0.4;0.7β = and a network size 

60.n =  

FIG. 11: Average degree correlation r for a 

network size 60n = , { }0.8;0;0.4α = − ,  

and different values of .β  Until the first phase 

transition at   3 ,α β= the degree correlation is 

slightly below zero (but converges to zero for 
larger networks as in the classical random 
graph). Between the first and second phase 
transition, the network displays self-organised 
criticality and the degree correlation increases 
until about 0.1r = (and beyond 0.25 if the 
evolution lasts longer). After the second phase 
transition, the degree correlation is slightly 
negative. The example constellations 

{ }0, 0.1; 0.4α β= = have a positive ,r while 

the constellation 0, 0.7α β= =    leads to a 
network with a negative .r  
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distributions for 0.4β =  and the one for co-directors or the degree distribution for 0.7β =  (network 

size 200n = ) and the one for collaborations in physics.  
 

V.   Conclusions 

The network model described above is based upon a plausible sociological concept -balance theory- 
and reproduces several characteristics of known social networks, notably a positive degree correlation 
and a variety of degree distributions. The model shows that these networks evolve over time, and that 
their characteristics require different durations until they reach their stationary values. This, and the 
existence of different balance thresholds between groups, organisations, and populations might explain 
the observed variety of real world degree correlations and degree distributions. The reasonable fit with 
some empirical network properties can also be interpreted as a validation (but certainly not a proof) of 
balance theory. This line of reasoning offers several new avenues for empirical research. For example, 
it would be interesting to determine the average balance threshold in different contexts (nations, 
cultures, metropolitan vs. rural areas) and then verify the respective network properties like the degree 
correlation.  
The model could be extended in many ways. For example, it would be interesting to check out other 
values of the friendliness index in order to test variations of Structural Balance Theory or to 
incorporate exogenous factors that influence the quality of links. Another extension could be to assign 
a distribution of balance thresholds to the population. Moreover, alternative network traits could be 
investigated and checked for their realism, especially on much larger networks. Finally, the model 
suggests that people constantly redefine their social contacts. Thus, the rate of social adjustments 
within the network (rebalancing sentiments by removing social links) is much faster than the rate by 
which new contacts are established. This contrasts with many other models of network evolution 
where new edges are added to the network at quicker rates than edges are removed from the network 
(the usual logic being that links stay in the network for a person’s lifetime) [5]. Interestingly, the 
gravity of social confrontations and revolutions (as, for example, measured by the number of workers 
involved in strikes [19] or by the number of victims in terrorists attacks [20]) seem to follow a power-
law as well. If we therefore interpret the size of social upheavals as the change in triangles of the 
underlying network, we can use the model as a conceptual bridge between the population’s sentiments, 
the evolution of its social network, and the likelihood of social disruptions. 
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