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Social networks in communities, markets, and s@msetelf-organise through the interactions of many
individuals. In this paper we use a well-known nmasgbm of social interactions -the balance of
sentiment in triadic relations- to model the etoln of social networks. Our model contrasts with
many existing network models, in that people ndy @stablish but also break up relations while the
network evolves. The procedure generates seveetesting network features such as a variety of
degree distributions and degree correlations. €balting network converges under certain conditions
to a steady critical state where temporal disruystion triangles follow a power-law distribution.

PACS numbers: 87.23.Cc, 87.23.Ge, 89.65.Ef, 8%,/89.75.Da, 89.75.Fb, 89.75.Hc

|. Introduction

Complex systems like organisations and organistendéke the form of networks —sets of actors,
cells or other units tied together by edges. Tdarphe behaviour of complex systems, network
models have been developed in many fields, for @k&nm physics, biology, operational research,
economics, and sociology [1, 2]. Most of these n®wdeproduce the observed properties of biological
and technical networks well but provide less adeudascription of social networks. The reason for
this could be that people -unlike cells or parselpursue individual goals that are mostly respuasi
for their social contacts [3]. These goals afféet metwork but are also affected by the network [4]
The goals as well as the network are not staticbtgvolve over time.
Of course, several general principles of netwomstaction could apply in the social as well athi@
physical domain [1]. Take, for example, three facbmmon growth principles of networksndom
attachmentpreferential attachment, and age-driven remofRandom attachmentsight happen
within groups of people with no previous contadtalb(say, on a cruisePreferential attachment
could be at work when people with a larger numiidriends tend to acquire new friends more readily
(evoking theMathew effect“For to every one that hath shall be giveiye-driven removaltake
place as people die or fall into oblivion (for exalm forgotten High School friends). These prinegl
surely play a role in the emergence of social netsichowever, they only describe wholesale
phenomena, insensitive to individuals’ goals. Bamaple, a person might rather choose to contact a
less popular person if his position in the soc&tivork makes it preferential to do so.
How then can we extract a feasible constructiongipie out of the myriad of individual goals in
social groups? Sociology offers at least two figdinthelocality principleandstructural balanceThe
locality principle describes the fact that peoplestty choose their social contacts based on thedl|
information of the network [3]. For example, peopight become acquainted with each other through
the introduction by a common friend. Using thisuangnt, [5] simulated the evolution of social
networks by randomly linking up neighbouring nodesch an introduction mechanism alone,
however, does not take into account two other astares of social life: the quality of dyadic
relations (Do two people like/dislike each otheaf@)l triadic relations (Do two people compete far th
attention, co-operation, etc. of the third persofigse two aspects of social interactions aremajo
drivers of social choice and at the heart of anothessic in SociologyStructural Balance Theory
Structural Balance Theorgvolved from the work of [6] and describes a sosédection
process in people’s minds. According to this thepgople establish dyadic relations that each side
equivalently perceives as either positive or negalf three persons form a triadic relation they
perceive it as either “balanced” or “imbalancedpdnding on the number of positive and negative
relations in the triangle (see FIG. 1).
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FIG. 1: Positive (+) and negative (-) sentimentriengle
relations and the respective triangle type.

A balanced triangle exists if either one or altlod three relations are positive, that isnfy‘friend’s
friend is my friend or “my enemy’s enemy is my friéndr “my enemy'’s friend is my enéimngr “my
friend’s enemy is my enefnyAn imbalanced triangle, in contrast, occurs liméher constellations,
that is if either two or none of the three relati@me positive. Imbalanced triangles provoke unease
and force people towards more balanced consteiktizat could involve a re-organisation of the
entire network [7]. These effects of triadic redat have been confirmed in several empirical studie
[8, 9]. It, thus, seems reasonable to use the balahsentiment in triadic relations as a consiouct
principle for social networks.

In the following we introduce a network model tigbased on the insights of balance theory
as well as the locality principle. To model thewatk growth accordingly, we randomly attach
positive and negative edges to a given set of ndeseach node, we keep track of the number of
unbalanced triangles. Once a node reaches a ctrtaghold of unbalance sentiments, we remove its
links at random one after the other until the thodd is not exceeded. This process in turn mighsea
other nodes to become too imbalanced so that thelemcing process cascades until all nodes are
sufficiently balanced again.

We first show how to model such a network’s evaintand then analyse when the evolution process
converges towards a state of self-organised ditiicdhe concept of self-organised criticality in
social sciences and especially in networks is ratber [10]. We here define a network’s self-
organised criticality as a statistical steady stdtere the average number of added and removesl link
(or triangles) per time step is equal, and theibistion of triangle removals in a given time uisit
scale-invariant [11,12]. The properties of netwdrkself-organised criticality will be reported datin

the article.

[I. Model of network evolution

Consider a set ofivertices (that is, persons) that are subsequédnkgd with each other. At each
time stept a single symmetric positive or negative link isaefished at random between two directly
unconnected vertices. The likelihood of a link'salijty (positive or negative) depends on a
friendliness index1< a <1 so that the probability of a positive link45*. Accordingly (see FIG. 1),

the probability of a randomly chosen triangle bedadanced (respectively unbalanced) is

3 + 3 a+ a+ _a3+1.
o =3+ Do) ()= 55
a+l_1-a’
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If we have, for exampleg =0.4, then 70% of newly introduced links are positivel a
%(0.43 + ]) = 53.2%of triangles are balanced (see FIG. 2). In gen#ralshare of balanced triangles
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in the network shifts only slightly as the friemtiss index varies betweef).5< a < 0.E. It is only
for extreme values forr that the mix of triangles changes dramatically.
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Now consider a uniformly distributed threshold paeser-1< £ <1 that indicates the quantity of
imbalanced triangles that is just tolerated by gend We comparg with a vertexi 's balance index

+ -

@ :[A - J , Wwhere»™ anda™ are the number of balanced and imbalanced trianglening
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through the vertex. Hence, a vertestays inert as long g8= ¢, , and becomes unbalanced
otherwise. After a new link is added to the netwailkp, of the network are calculated in a random
sequence. If a verteix exceeds the threshol@, one of its links is randomly removed and its baka
index ¢, is recalculated. If this vertex is still unbaladdbe procedure continues until it is balanced
again. Now all remaining, are again determined in the same sequence aspafat the procedure

goes on for each unbalanced vertex until all vestiare sufficiently balanced again. Only then a new
link is attached to the network.
It could be argued that an agent does not randoentpve one of his links but rather tries to abandon
the link that adds most to the unbalanced condifiando this, however, the agent has to closelpkee
track of each link’s triangle contributions, whiseems to be a daunting, if not impossible task for
networks of any complexity. Hence, random link remie are quite plausible, especially if they are
interpreted as an actor’s attempt to become maiteaiaed in general.

The network’s evolution proceeds either until tieéwork contains the maximum number of
potential linksn(n—-1)/2 [13], or until a predetermined number of time stepreached. For each

time step, we measure several network propertiespamber of link removals as well as number and
type of triangle removals.

lll. Settings for the network’s evolution

Three types of networks occur in the simulatiatense semi-sparsgandsparse networkésee FIG.
3). In dense networks the number of triangteand links E, at time stept quickly grows, partly

interrupted by little cascades of break-ups, uhtl network becomes complete at or soon after
t=n(n-1)/2 is reached. Sparse networks hardly have any tdarand accumulate only a relative

small number of links up to a certain level arowddch both=, and E, fluctuate. Semi-sparse

networks have a similar growth pattern to sparsearks; however, the level around which their
number of triangles and links fluctuate is sigrafitly higher than in sparse networks.
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FIG.3: Typical growth patterns of trianglé&s and links E,
in dense, semi-sparse, and sparse netw@rks60)during
the early time steps of the evolution .

The type of network depends on both the friendBriadex and the (assumed) uniform balance
threshold in the population. To investigate theatspof networks” we vary the friendliness index and
the balance threshold for representative valuesati constellation, the network sizenis 60and

the duration of the evolution 15, =1, 700, to be well before the time=60x 59/2= 1, 77(when the

network could become complete. We measure the g@enamber of links betweeh600<t<t,_,

and repeat this procedure 4 times to calculat@ateeage number of edg&over all four network
evolutions (see FIG. 4).
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For each friendliness indexx we obtain a different function between the balahceshold and the
average number of links. Fer =1.0, the network has the maximum number of 1,700 Ireigardless

of the balance threshold as a new link is addezhalh time step and no break-ups occur. These cases
are thus equivalent to the classical random graptietn(also called ER-model) [14]. The same ER-
network is in place foi3 = -1, when the population tolerates an unlimited nundferegative triads.

If a=-1.0, the network contains 1,700 links whgwr -1, but only about 145 links for most other
balance thresholds. A special combinatiomris —1.0 and =1 where no triangles exist at all and
the network only features tree graphs. For all ottadues ofa, we find similar functions between
B and E , each featuring a phase of dense, semi-sparsepanse networks.



In the first phase the network is dense and costainty slightly less than 1,700 links. As the bakan
threshold becomes more positive, the network’s ramob links strongly decreases and the networks
become semi-sparse. Beyond a certain degree déiatee (balance threshold), however, the number
of links is very low and decreases only slightlytlsat only sparse networks come into place. Heihce,
seems that two different phase transitions sepdetse from semi-sparse networks and semi-sparse
from sparse networks. In “high tolerance settingjs& networks are dense and quickly become
complete. The “low tolerance settings”, in contyassult in sparse networks throughout the netvgork’
evolution, while “medium tolerance” leads to sempésse networks.

We can offer the following explanations for the gharansitions’ boundary conditions. Let us first

take into account the probability for a balanceahgle P, = 1*;’3 and the minimum proportion of

balanced triangles required by the network’s memlé‘ér.The transition from dense to semi-sparse

networks appears to take place if the probabibtyaf balanced triangle is lower than the required
share of balanced triangles:

L+1 1+a® 1+p 3
P, < = = =>a’ < 2
5 <5 2 2 B (2)
Otherwise the probability that a node retains an unbalanced triangle atsbaet quickly increases

fromU =R, =£2 att=0to U =1 so that the network becomes dense.

If a* < f,the probabilityU is still a function ofR, but also depends on the required minimum
proportion of balanced triangleégi.The latter translates into a required numhgpf balanced
triangles that a node has to accumulate befoedins its next unbalanced triangle (unlgss -1, so
that all triangles are tolerated). For this numieiit must hold that

y-1_ p[+1 2
g - y=——. 3
y > "Y1 p 3
We then can say that the probabilily is a functionS(a; 5)
1+a3 y 1+a3 2/(-5)
S(a;,é’)=( > j =( > J : (4)

which is the probability that a randomly chosenddey triangles created at any time throughout the
evolution, contains only balanced triangles. A eldsok onS(a; 5) reveals why a transition
between semi-sparse and sparse networks seenketplage. In FIG. 5, we plds for a =0and y
against different values g8.
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Apparently, Sdecreases steadily Agrows. At a certain value ¢f (for a =0, at abouj =0.65),

the probabilityS is close to zero. This follows from the fact tha set sizey, increases dramatically
beyond 5 =0.65. This effect is likely to cause the transitionvee¢n semi-sparse and sparse
networks. The exact boundary condition for thegithon, however, depends not only 8rbut also on
the network sizen, the durationt,_,, of the network’s evolution, and other random efegduring the
evolution.

To get an idea of the second phase transition’sithowre measure the number of balanced and
unbalanced triangles in the network at each tirep st =; and =, ), and calculate the average share

+

of balanced triangleg, =;zt E‘E, for a given duratiort,,,, <t<t__ . The graph in FIG. 6

— —+
tmax~tmin =t

showsé; for a ={—0.8; 0;0.4} (simulated forn =60 and averaged over 100 time steps between
1,600<t < 1,70(and over 30 simulations) against different valoieg.
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For lower values off3, the share of unbalanced triangles is close teXactly, for 5=1)
%(1+ 0'3) as long agr® = f.1n this phase almost all unbalanced triangles eceted after a

sufficient number of time steps so tht=P,.If a® <3, the share of balanced triangles goes up
aspincreases, and approachg§s =1for values of 5 =0.4to S =0.6.For example, the three cases
4 ={O.1;0.4;O.7 for a =0 have a share of balanced triangles of about 65%, @nd 100%.

Interestingly, the shares of balanced trianglezeimi-sparse networks dnegherfor cases of lower
values ofa.Moreover, it becomes clear that a share of balatreaplesé,, =1corresponds to sparse
networks.

The fact that a very high share of balanced triemgidicates a sparse network allows us to get an
overview of transitions between semi-sparse andsep@etworks across different settingsoodnd £.

Let us define the margia =1- &, = 0 by which the share of balanced triangles in thevok is
lower than 1. This margin is driven [§(a; 8) , the network sizen, the duration of the evolution
t...and other random effects during the network’s etoitu If we set everything else constant, we
can define a sparse network in termscoéind S(a; 8) where the following holds

p+1_logs) _ ,_  2log(*F)
2 " log (%) B log(€)
All networks whose share of balanced triangleS 8 — £lare thus defined as sparse. This allows us

to indicate the boundary condition between semisspand sparse networks for different
combinations ofa and S. To this end, we simulate networks with=100and measure the share of

balanced triangles far0,000<t < 30, 00( The boundary condition between semi-sparse andepa

S(a;B)s¢€ = (5)
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networks is then fitted to the data with= 0.03 (see FIG. 7). The example networks for
a=0,3={0.1,0.4 are semi-sparse, while the network fo=0,3={0.% is sparse.
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We also show the phase transition between densseanidsparse networks as given by (2). At
t__ =30,000 all networks witha® > Bare complete while most other networks have feimés|
However, some of the semi-sparse networks becomelete as well. So obviously, the boundary
conditions are not entirely fixed. As we will seethe next section, the links and triangles of oeks
in and around the semi-sparse area fluctuate ceradity during the evolution. This can result in
sparse networks becoming semi-sparse and semiespetsorks becoming dense.

IV. Simulating the network’s evolution

The network’s evolution is interesting in two resgge first, the number of break-ups that occur ryri
each time step of the network’s evolution, and ad¢cthe corresponding development of network
traits. To describe the network, we calculate tlWing properties after each time stepthe

number of linksE,, the number of balanced and unbalanced triangig¢arfd =), the share of

balanced triangleg; , =::T: the number of newly formed trianglél&, at the beginning of time

stept, the break-ups of the number of links and triasgB€, =|E, +1- E_| and

0=, =|Et +d=, —Et_1| ), the degree distributiom, (k) , and the degree correlationThe degree
distribution indicates the shang(k) of vertices withk links in a network. The degree correlation

r represents the tendency of network nodes to beewded to nodes of similar degree. It is defined as
the Pearson correlation coefficient of degreestaeeend of a link and assumes values between
-1<r<1[17].

On a more technical side, there is a balance &irbek between the network’s sin@and the
durationt__ of the network evolution. While certain networktsstics like the distribution of break-
ups per time step clearly require a large netwotie meaningful, the running times usually become
unacceptable for very large networks. However, ar gartly capture the behaviour of large networks
by extending the duration of the evolution (for e, to collect more extreme outliers of break-up
sizes). It is for these reasons that in the nemtiktion we run the network’s evolution for 100,000
time steps with a relatively small network sizes 60. As before, we choose the three standard
constellations with balance thresholds/bf:{o.l;OA; O.T and a friendliness index @f =0.

FIG. 8a) and 8b) depicts the relative frequencyafgiven number of break-ups of triangles
and, respectively, links during a time steplhe break-up distribution for triangles can el to a
power-law for semi-dense networks (heffez 0.1 and £ =0.4). For example, the power-law



exponent of the break-up distribution f@r=0.1 is about 1.3. Ag increases, the power-law exponent

becomes larger and larger, that is, the power-iatridutions become steeper. For sparse networks
(here: £=0.7), the distribution is exponential, as shown in $keni-log plot of the insert in 8a).

The break-up distributions for links can be fittecan exponential function [18] whose mean
is (very close to) 1 as long as the network is dense (here, for all three cag&és{O.l;OA;O.j?). In
other words, the average creation of links equagdestruction in the network in all settings badon

the first phase transition. According to our ddfom, this is an indicator that networks approach a
state of self-organised criticality.
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FIG. 8: The relative frequency distribution of thg number of break-ups of triangl@s, and b) the
number of break-ups of link8E, in the network during =10,000until t=100,000for g ={0.1,0.4;0.}. The
break-up distribution of triangles follow a poweml for 5 =0.1 and 8 = 0.4and an exponential
distribution for 8 =0.7. The break-up distribution for links seem to follexponential functions but can

also be fitted to power-law functions. Simulatievith much larger networks are required to confihis t
judgement. The regressions become less accuralégfdy infrequent data points due to the finiteesof
the network and of the network’s evoluti

Simulations of other settings show that break-updgeinse networks hardly occur while break-ups in
sparse networks are frequent but of limited sizee fieason for the latter is that unbalanced netsvork
beyond the second phase transition are almost alteay apart upon their creation, which leaves no
room for the creation of network structures largewgh to provoke break-ups at significant scale. So
it is only in semi-sparse networks, we find that ttumber of triangle break-ups follows a power-law.
This condition, of course, only holds if the avaragimber of added and removed links is in
equilibrium. Before such a state is reached, tisegestarting or “build up” phase, as shown in FG.
The plot depicts the number of links, triangleg] aositive triangles during the evolution of a netkv
with @ =0 and S =0.1. After the start-up phase is finished after abq80Q time steps, the number

of links starts fluctuating around a value thaali®ut 33% of the maximum number of potential links
(60069/2= 1,77() in this setting.
The fluctuating state (or “stationary state”) begihe earlier the higher the balance thresh®ld.

However, its start can be difficult to spot, espégifor the number of triangles. As observabl&i6.

10, the number of triangles approaches the fluctgatate much later and is more volatile than the
number of links, given that there are many momgles than links. The swings can be massive even
for the short period of 10,000 time steps. In owraple, there is a decrease of about 30% of tresngl
and of about 15% of links between time steps 6a6¥6,480. The positive triangles’ trajectory
mostly moves in parallel to the development otr@@dingles. However, the share of positive triangles
decreases until it converges to about 60% of fmakible (FIG. 10).
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The reason for this decrease is that, as the éwolof the network proceeds, more and more linkk an
triangles are located with nodes which by chanee lemjoyed a stream of predominantly balanced
triangles. These “super-balanced” nodes act aahdlistng “buffer” as they increase the network’s
capacity to absorb negative triangles. The orietgbwards “super-balanced” nodes also has a
strong impact on the development of the degreestadion and degree distribution.
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The degree correlation and degree distributiontdlate throughout the evolutionary process
and each is quite different in the “start up” phasd the stationary phase. Therefore, we take gesra
over a period of time steps that surely take platbe stationary phase (usually fr, =10, 000until

t..« =100,000) and mark mean values by a bar over the respesywbol: the average degree

correlation isr :tm;ztrt and the average degree probabilitypik) = —1 Zt R (K. Proceeding

ax ~Lmin tmax~tmin

in this way, we can compare different constellagioha and S.
The degree correlation mostly assumes negative values at the beginnitigeafietwork’s

evolution but finally fluctuates around positivdwes in semi-sparse networks (see FIG. 11). The
increase of the degree correlation is again dulkeedact that links and triangles gravitate to the
“super-balanced” nodes. These nodes are less likggmove links, and thus, on average, tend to be
linked to each other, resulting in a positive degeerrelationr, (*hard core effect”). The “hard core

effect” increases as the balance threshold incsdasedisappears after the second phase transition
sets in. The reason for this on-off phenomenoregfee correlations is that an increasing balance
threshold, on the one hand, makes the group ofetsbplanced” nodes more exclusive and fosters
links to and between them. On the other handciteiases the number of nodes who frequently break
up links and “re-randomise” the network. Both caurgteering trends determine the size of the “hard
core”. If the “re-randomisation” dominates, as jrasse networks, the degree correlation becomes
slightly negative. In case of completed networks, degree correlation is very close to zero, bghini
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slightly diverge from zero if the network size &atively small or if a sufficient number of breags
have taken place before the network is completed.

FIG. 11: Average degree correlatiorfor a
network sizen =60, a ={~0.8;0;0.4 ,
and different values of3. Until the first phase

transition at a® = 3, the degree correlation is

slightly below zero (but converges to zero for
larger networks as in the classical random
graph). Between the first and second phase
transition, the network displays self-organised
criticality and the degree correlation increases
until about™ =0.1(and beyond 0.25 if the
evolution lasts longer). After the second phase
transition, the degree correlation is slightly
negative. The example constellations

04 il @ =0,8={0.1;0.4 have a positive, while
-1 -08 -06 -04 -02 0 02 04 06 0.8 1the constellatiorr=0,8=0.7 leadsto a
4 network with a negative .

The balance threshol@ not only has a strong impact on the degree coioeldiut also on the degree
distribution p(k). The inset of FIG. 12 shows the degree distribufpgk) for the three cases of
B ={0.1,0.4;0.F with a network sizen =60. Again, the “hard core effect” is at work: if thalance

threshold increases, the “super-balanced” nodesagiditional links during the network’s evolution,
which leads to more varied degrees and thicket tajts of the distribution. At a certain pointgth
“hard core effect” becomes smaller as the “re-ramdation” intensifies. If the balance threshold is
high enough 8=0.7 in the example), the degree distribution seent®twverge to a Poisson
distribution, as in a pure-random graph.

The average degree moves in parallel to the nuofidarks as shown and reaches a stationary value
after an initial build-up. This stationary valuecdeases for higher balance thresholds (see FIG. 4).
All degree distributions have their mode at rattraall degrees and are skewed to the right. For some
constellations, (see for exampl8,=0.1, n=60) the degree distribution also displays a local
maximum for highly connected nodes. This, howergght again be a finite-size effect as it
disappears for a network with=200(see FIG. 12). The simulations with networks oésiz
n=200also generate much higher average and maximumelegral result in more skewed degree
distributions than in the case of=60. These variations of the degree distribution dipaéect other
characteristics of networks, such as the degraanae or the epidemic threshold of the network [2].

0.15
i A‘A 025 | FIG. 12: Degree distributio(k)
02 g °© B=01 (averaged over time steps between
A A t =12,000 and t = 20, 00C) for
0.1+ 50 0.5 | ¢ B=04- B={0.1,0.4;0.¥ and a network size
O R Y A =07’ of n=200.
Pl | P T %A Inset: Degree distributio(k)
. 0.05 (A éIQz) : g o
0osl o ¢4 m (averaged over time steps between
| A @ 0 t =3,000 andt =10, 000) for
° 0." 0 10 20 30 40 50 )
i * K B={0.1,0.4;0.¥ and a network size
K SV W%Wpo
oA A o, n=60.
o Mwm@mm
10 20 30 40 50 60

0 70
k
We find that the generated degree distributi@ik) mimic those in the real world strikingly well for

suitable values of the balance threshold [18].é¢x@mple, compare FIG. 12 and, in [18], the degree
10



distributions for 5 =0.4 and the one for co-directors or the degree digtioh for3=0.7 (network
size n=200) and the one for collaborations in physics.

V. Conclusions

The network model described above is based updausiple sociological concept -balance theory-
and reproduces several characteristics of knowialoetworks, notably a positive degree correlation
and a variety of degree distributions. The modelnghthat these networks evolve over time, and that
their characteristics require different durationsilithey reach their stationary values. This, &mel
existence of different balance thresholds betweenys, organisations, and populations might explain
the observed variety of real world degree corretatiand degree distributions. The reasonable it wi
some empirical network properties can also be pnéted as a validation (but certainly not a pradf)
balance theory. This line of reasoning offers salveew avenues for empirical research. For example,
it would be interesting to determine the averadariz threshold in different contexts (nations,
cultures, metropolitan vs. rural areas) and theifywthe respective network properties like the ey
correlation.

The model could be extended in many ways. For el@ritpvould be interesting to check out other
values of the friendliness index in order to temiations ofStructural Balance Theorgr to

incorporate exogenous factors that influence tradityuof links. Another extension could be to assig

a distribution of balance thresholds to the popotatMoreover, alternative network traits could be
investigated and checked for their realism, esfig@a much larger networks. Finally, the model
suggests that people constantly redefine theiasoontacts. Thus, the rate of social adjustments
within the network (rebalancing sentiments by reingwsocial links) is much faster than the rate by
which new contacts are established. This contraistsmany other models of network evolution
where new edges are added to the network at quiakes than edges are removed from the network
(the usual logic being that links stay in the natwor a person’s lifetime) [5]. Interestingly, the
gravity of social confrontations and revolutions,(for example, measured by the number of workers
involved in strikes [19] or by the number of vicsrn terrorists attacks [20]) seem to follow a powe
law as well. If we therefore interpret the sizesotial upheavals as the change in triangles of the
underlying network, we can use the model as a ginaébridge between the population’s sentiments,
the evolution of its social network, and the likelod of social disruptions.
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