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The Model
• Bipartite network 

E individual vertices each with one edge 
connected to N individual vertices

• Study degree k of artifact vertices
n(k) = degree distribution, 
p(k) = n(k)/N = degree probability distribution

N artifacts

E individuals

k=1 k=0 k=3 k=0

E edges

k degree 
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The Model - Rewiring
• Removal: Choose an edge intending to rewire its artifact

end = choosing departure artifact with probability ΠR.
• Attachment: Choose an arrival artifact with probability

ΠA ready to accept edge.
• Rewire: Only after these choices are made.

N artifacts

E individuals

ΠA ΠR
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E edges

Equivalence to other network rewiring models
• Directed/Undirected Network:  

Join edges of individual vertices (2i) and (2i+1).
[Watts and Strogatz, 1998]

N artifacts

E individuals
(E/2) edges

This is just a Molloy-Reed [1995] projection onto a 
unipartite random graph of artifact vertices, with 
degree distribution p(k)
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Equivalence to other network rewiring models (2)

• Alternative
Projection 2:

(N=E) Merge each 
individual vertex with 
one artifact vertex 
and let edges point 
from the individual to 
the artifact end. 
[Park et al. 2005]
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Relationship to Statistical Physics Models
Some parameter values of other models are 

equivalent to our model:
• Urn Models [Bernoulli 1713, …, Ohkubo et al. 2005]

• Zero Range Processes (Misanthrope version)
[review M.R.Evans & Hanney 2005]

• Voter Models [Liggett 1999, …, Sood & Redner 2005]

• Backgammon/Balls-in-Boxes
applied to glasses [Ritort 1995], wealth distributions, simplicical gravity …

1 2 3 1 2

3

A B C D

A B C D

Artifacts

Urns
Individuals

Balls

4

4
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Relationship to Other Systems

• Gene Frequencies [Kimura and Crow, 1964]
-Inheritence and Mutation
Organisms (=individuals) inherit a copy of a gene (alleles = 
artifacts) leading to drift in genetic frequencies.  
Alternatively they gain a new mutation (random choice).

• Family Names [Zanette and Manrubia, 2001]
-Inheritence and New Immigrants
Males (=individuals) inherit family name (=artifacts).
Occasionally new names appear randomly
(e.g. immigration).

• Language Extinction

• Minority Game variant (see later)[Anghel et al, 2004]
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• Cultural Transmission [Bentley et al.,1999…2006]
Individuals copy (pp) the choice of artifact made by 
others or innovate (pr)
e.g. choice of pedigree dog, 

baby names, 
pop chart positions,
archaeological pottery types,
tennis star celebration action (?!),
language extinction [Stauffer et al. 2006],
fashion …

Relationship to Other Systems
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• Cultural Transmission 
- Fashion (?) in the shoes of male physics

students [Morgan and Swanell 2006]

Relationship to Other Systems

186 Individuals in 196 categories of which 37 used, 
most popular white lace up trainers (39)
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Mean Field Degree Distribution Master Equation

Mean field approximation very accurate for 
many models (low vertex correlations)
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Can the Mean Field equation be exact?

YES 
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Only Exactly Solvable Case
To be able to solve exactly we limit the 

attachment and removal probabilities, ΠR 
and ΠA, to be linear in degree exploiting 
only two constants of the motion, N and E

− ΠR (k)= (k / E) Choose random edge to be rewired

− ΠA (k)= [(1-pr)k + pr<k> ] / E

Fraction pr of the 
time choose 

random attachment

Fraction (1-pr) of the 
time use 

preferential attachment
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Exact Mean Field rewiring processes

• Removal: 
A random individual decides to 
update their choice of artifact

• Attachment:
With probability (1-pr) the 
individual copies the existing 
choice of any individual.
With probability (pr) the 
individual innovates by 
choosing a random artifact.

artifacts

individuals
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Exact Equilibrium Solution

• Simple ratios of Γ functions
• Similar to those found for growing networks but 

second fraction is only found  for network 
rewiring

• Only approximate solutions known previously
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Large Degree Equilibrium Behaviour – Large pr Case

For pr > p* ~ 1/E  
(on average at least one edge attached to a randomly
chosen artifact per generation)

[ ] )exp()(lim kkkn
k

ζγ −= −
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k
p
p

p

r
−=1γ Power below one but in data 

indistinguishable from one

)1ln( rp−−=ζ Exponential Cutoff
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Large Degree Equilibrium Behaviour – Small pr Case

For pr < p* ~ 1/E
(on average if all edges have been rewired once no
edge is attached to a randomly chosen artifact per
generation)

Degree distribution rises near k=E
⇒In extreme case pr=0 all the edges are 

attached to ONE artifact
- a CONDENSATION or FIXATION
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Equilibrium Behaviour Results
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Solution
Best solved using the generating function
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Features of solution
• n-th moment of degree distribution gets 

contribuitions from only m≤n eigenfunctions
• m=0 eigenfunction number zero 

- only time independent solution = equilibrium
- fixes distribution N

• m=1 eigenfunction never contributes otherwise 
would make first moment E time dependent

• Slowest time dependence comes from m=2
eigenfunction setting time scale

τ2 = -1/ ln(λ2)   ≈ [2(pr/E) + 2(1-pr)/E2]-1
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Homogeneity Measures Fn

• n-th derivatives of generating function 
gives measures of homogeneity related to 
n-th moment of degree distribution
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• These are simple known ratios of Γ functions

• Equals the probability of choosing n different
individuals connected to the same artifact

⇒ Fn = 0  if no artifact chosen more than once
Fn = 1  if all individuals attached to same artifact
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F2 Homogeneity Measure

F2 = probability that two different individuals
have chosen the same artifact
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Phase transitions in real time

• Bipartite graph can be projected onto a 
unipartite graph of the artifact vertices

• Artifact degree distribution p(k) is the 
degree distribution for a random graph 

1
3

N artifacts

4

(E/2) edges

A Molloy-Reed 
[1995] projection

2
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Graph Transition in Real Time

Infinite Random Graphs (given p(k) but 
otherwise completely randomised) have a 
phase transition (appearance of GCC - great 
connected component) at [Fronczak et al 2005, etc]

z(t)=1
where
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Phase Transition in Molloy-Reed projection

For N=E=105, pr=0, initial F2(0)=0
• z(t)=1 at t=0.50000 (2) as predicted
• Transition at t/E = 0.535 (5)
• At transition  z(t)=1.06 (1) not z(t)=1
• Average distance and diameter of GCC 

maximum at this point and second derivative 
of number of vertices in GCC zero at this 
point (within errors)

⇒Finite size effects clearly present
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Generalisations of Model
• Add a graph to the individual vertices

-choose who to copy using individual’s network

• Add a graph to the artifact vertices
-mutations/innovations limited by metric in an
artifact space

• Different types of individual 
-update their choice and copy/innovate at
different rates
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Adding a Network of Individuals
• Removal: Choose random individual as before
• Attachment: 

With probability (1-pr) the individual copies the 
existing choice of any neighbouring individual.
With probability (pr) the individual innovates

artifacts

individuals

Individual 
Graph
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Equilibrium with  a Network of Individuals
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Approach to Equilibrium for different Individual 
networks

• Results move away from complete graph as 
move from 3d -> 1d lattice
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ρ = probability that 
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different choice
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Voter Model [Liggett 1999; Sood & Redner 2005]

• At each time step an individual is chosen 
randomly who copies the choice of a neighbour 
in an individual network

• Equivalent to N=2, pr=0 limit here
• Study time scales to come to complete 

consensus = condensation
• Used for models of language [Stauffer et al. 2006]

⇒We find approach to complete consensus is slow 
but a little randomness can speed this up while 
leaving a fairly complete condensation
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Minority Game Example - Leaders and Followers

• At each step each individual chooses one or zero 
– the minority choice wins

• Choices are made based on one of a large but 
finite number of strategies using finite history 
– each strategy is a different artifact

• Individuals may follow their own prediction or 
they may follow the prediction 
from the most successful nearest neighbour in 
an ER random graph of individuals
– i.e. they copy the strategy of a neighbour
[Anghel et al. PRL 92 (2004) 058701]
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Minority Game Example – Leaders and Followers
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Minority Game Example - Leaders and Followers

Minority Game variant [Anghel et al, 2004]
Agents (individual vertices) copy best strategy (artifacts) of 
their neighbours in an additional individual network.  
Number of people following a given strategy is effectively 
n(k) of our model.

Shows how copying can arise naturally
c.f. preferential attachment in growing networks

[TSE & Saramaki 2005]
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Two Tribes

Change model so there are two types of 
individual, each type chooses new artifacts with 
their own probabilities for:- (A) copying from 
same type, (B) copying from different type, 
(C) innovation

N artifacts

Ex individuals

(1,0) (0,0) (1,2) (0,0)=(kx,ky) degrees

Ey individuals
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Two Tribes

• Exact solutions for inhomogeneity measures 
F2ab(t) [a,b∈{X,Y}] still possible
- solutions of three-dimensional matrix

• 8 free parameters
- difficult to draw general conclusions

• Might relate to Freakonomics type 
explanation for baby names in terms of 
different socioeconomic groups
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Summary
• Made connections between rewiring of bipartite 

network and many other network, statistical 
physics and social science models.
Some connections made in some existing papers.

• Exact mean field equation.
Only now is behaviour at boundary k=E correct.

• Exact equilibrium solutions.
Previous results for large degree k, large systems N,E.

• Exact solutions for all times in terms of standard 
functions – phase transitions in time
I know of no other network solutions for 
arbitrary time and arbitrary size.
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Summary

Many variations of model
– Individual Networks

Only 1d lattice seems to make a big difference
to equilibrium

– Generalisation of Voter models
pr can speed process up without significantly
upsetting consensus

– Two Tribes
exact solutions for some aspects possible with two
types of individual
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