Imperial College Oxford, 8th May 2007 London **Theoretical Physics** 100 years of living science **Exact Results** for Cultural Transmission

and Network Rewiring

T.S.Evans, A.D.K.Plato

- "Exact Solution for the Time Evolution of Network Rewiring" Models" Phys. Rev. E 75 (2007) 056101 [cond-mat/0612214]
- "Network Rewiring Models" (for ECCS07) www.imperial.ac.uk/people/t.evans

Tim Evans

The Model

- Bipartite network
 E individual vertices each with one edge connected to N individual vertices
- Study degree k of artifact vertices

 n(k) = degree distribution,
 p(k) = n(k)/N = degree probability distribution

The Model - Rewiring

- **Removal**: Choose an edge intending to rewire its artifact end = choosing departure artifact with probability Π_R .
- Attachment: Choose an arrival artifact with probability Π_A ready to accept edge.
- **Rewire**: Only *after* these choices are made.

Equivalence to other network rewiring models

 Directed/Undirected Network: Join edges of individual vertices (2i) and (2i+1). [Watts and Strogatz, 1998]

N artifacts

E edges (E/2) edges E individuals

This is just a **Molloy-Reed** [1995] projection onto a unipartite random graph of artifact vertices, with degree distribution p(k)

© Imperial College London

Equivalence to other network rewiring models (2)

• Alternative Projection 2:

(N=E) Merge each individual vertex with one artifact vertex and let edges point from the individual to the artifact end. [Park et al. 2005]

Relationship to Statistical Physics Models

- Some parameter values of other models are equivalent to our model:
- Urn Models [Bernoulli 1713, ..., Ohkubo et al. 2005]
- Zero Range Processes (Misanthrope version) [review M.R.Evans & Hanney 2005]
- Voter Models [Liggett 1999, ..., Sood & Redner 2005]
- Backgammon/Balls-in-Boxes

applied to glasses [Ritort 1995], wealth distributions, simplicical gravity ...

Relationship to Other Systems

- Gene Frequencies [Kimura and Crow, 1964]
 -Inheritence and Mutation
 Organisms (=individuals) *inherit* a copy of a gene (alleles = artifacts) leading to *drift* in genetic frequencies.
 Alternatively they gain a new *mutation* (random choice).
- Family Names [Zanette and Manrubia, 2001]
 -Inheritence and New Immigrants
 Males (=individuals) inherit family name (=artifacts).
 Occasionally new names appear randomly
 (e.g. immigration).
- Language Extinction
- Minority Game variant (see later)[Anghel et al, 2004]

Relationship to Other Systems

 Cultural Transmission [Bentley et al., 1999...2006] Individuals copy (p_p) the choice of artifact made by others or *innovate* (p_r) e.g. choice of pedigree dog, baby names, pop chart positions, archaeological pottery types, tennis star celebration action (?!), language extinction [Stauffer et al. 2006], fashion ...

Relationship to Other Systems

 Cultural Transmission
 Fashion (?) in the shoes of male physics students [Morgan and Swanell 2006]

Mean Field Degree Distribution Master Equation

Mean field approximation very accurate for many models (low vertex correlations)

$$n(k,t+1) - n(k,t) =+ n(k+1,t)\Pi_{R}(k+1)[1 - \Pi_{A}(k+1)]$$

$$(1-\Pi) \text{ terms}_{lnvariably}_{ignored} - n(k,t)\Pi_{A}(k)[1 - \Pi_{A}(k)]_{-n(k,t)\Pi_{R}(k)[1 - \Pi_{R}(k)]_{+n(k-1,t)\Pi_{A}(k-1)[1 - \Pi_{R}(k-1)]}$$

$$Number \text{ of edges}_{attaching to a vertex}_{of degree (k-1)}$$
Page 10
Probability of NOT reattaching to same vertex

Can the Mean Field equation be exact?

Only Exactly Solvable Case

To be able to solve exactly we limit the attachment and removal probabilities, Π_R and Π_A , to be **linear** in degree exploiting only two constants of the motion, N and E

 $-\Pi_{R}(k) = (k / E)$ Choose random edge to be rewired $-\Pi_{A}(k) = [(1-p_{r})k + p_{r} < k >] / E$

Fraction (1-p_r) of the time use preferential attachment random attachment

Fraction p_r of the time choose

Exact Mean Field rewiring processes

• Removal:

A random individual decides to update their choice of artifact

• Attachment:

With probability $(1-p_r)$ the individual **copies** the existing choice of *any* individual. With probability (p_r) the individual **innovates** by choosing a random artifact.

Exact Equilibrium Solution

$$n(k) = A \frac{\Gamma(k + \overline{K})}{\Gamma(k + 1)} \frac{\Gamma(E - \overline{E} - \overline{K} - k)}{\Gamma(E + 1 - k)}$$

$$\overline{K} = rac{p_r}{p_p} \langle k
angle$$

 $\overline{E} = rac{p_r}{p_p} E$

A is ratio of four Γ functions

- Simple ratios of Γ functions
- Similar to those found for growing networks but second fraction is only found for network rewiring
- Only approximate solutions known previously

Large Degree Equilibrium Behaviour – Large p_r Case

For $p_r > p_* \sim 1/E$

(on average at least one edge attached to a randomly chosen artifact per generation)

$$\lim_{k\to\infty} [n(k)] = k^{-\gamma} \exp(-\zeta k)$$

Power below one but in data indistinguishable from one

$$\zeta = -\ln(1-p_r)$$

Large Degree Equilibrium Behaviour – Small p_r Case

Blows

up

For $p_r < p_* \sim 1/E$

(on average if all edges have been rewired once no edge is attached to a randomly chosen artifact per generation)

Degree distribution rises near k=E

 \Rightarrow In extreme case $p_r=0$ all the edges are attached to ONE artifact

- a CONDENSATION or FIXATION

$$n(k) = A \left(\frac{\Gamma(k + \overline{K})}{\Gamma(k + 1)} \right) \left[\frac{\Gamma(E - \overline{E} - \overline{K} - k)}{\Gamma(E + 1 - k)} \right]$$

Solution

Best solved using the generating function

$$G(z,t) = \sum_{k=0}^{E} (z)^{k} n(k,t) = \sum_{m=0}^{E} c_{m} (\lambda_{m})^{t} G^{(m)}(z)$$

where:-

• Eigenfunctions $G^{(m)}(z) = (1-z)^m F(a+m,b+m;c;z)$

Hypergeometric function

$$a = \frac{p_r}{p_p} \langle k \rangle, \ b = -E, \ c = 1 + a + b - \frac{p_r}{p_p} E$$

• Eigenvalues
$$\lambda_m = 1 - m(m-1) \frac{p_p}{E^2} - m \frac{p_r}{E}$$

• c_m are constants fixed by initial conditions

Page 18

© Imperial College London

Features of solution

- *n-th* moment of degree distribution gets contribuitions from only *m≤n* eigenfunctions
- *m=0* eigenfunction number zero
 - only time independent solution = equilibrium
 - fixes distribution N
- *m*=1 eigenfunction *never contributes* otherwise would make first moment *E* time dependent
- Slowest time dependence comes from m=2 eigenfunction setting time scale

 $\tau_2 = -1/\ln(\lambda_2) \approx [2(p_r/E) + 2(1-p_r)/E^2]^{-1}$

Homogeneity Measures F_n

n-th derivatives of generating function gives measures of homogeneity related to *n*-th moment of degree distribution

$$\mathbf{F}_{n}(t) \coloneqq \frac{\Gamma(E+1-n)}{\Gamma(E+1)} \frac{d^{n} \mathbf{G}(z,t)}{dz^{n}} \bigg|_{z=1} = \sum_{k=0}^{E} \frac{k}{E} \frac{(k-1)}{(E-1)} \cdots \frac{(k-n+1)}{(E-n+1)} \mathbf{n}(k)$$

- These are simple known ratios of Γ functions
- Equals the probability of choosing *n* different individuals connected to the same artifact
 ⇒ F_n = 0 if no artifact chosen more than once F_n = 1 if all individuals attached to same artifact

F_n numerical results

0.6 **F**₂ 0.5 0.4 F_3 ÷. 0.3 F₄ 0.2 0.1 0 3 x 10⁴ 0.5 1.5 2 2.5 1 rewirings $_{2}^{(t)}(t)_{data}/F_{2}(t)_{exact}$ 1.004 1.002 0.998 0.996

E=N=100, p_r =0.01≅ p_* , Points: average of 10⁵ simulations Lines: exact mean field prediction Start: n(k)= $\delta_{k,1}$

> F increases as homogeneity increases with time Time dependence of averages predicted very accurately, deviations less than 1%

Phase transitions in real time

- Bipartite graph can be projected onto a unipartite graph of the artifact vertices
- Artifact degree distribution p(k) is the degree distribution for a random graph

A Molloy-Reed [1995] projection

Graph Transition in Real Time

Infinite Random Graphs (given *p(k)* but otherwise completely randomised) have a phase transition (appearance of **GCC** - great connected component) at [Fronczak et al 2005, etc]

$$z(t)=1$$

where

Phase Transition in Molloy-Reed projection

Phase Transition in Molloy-Reed projection

For $N=E=10^5$, $p_r=0$, initial $F_2(0)=0$

- *z*(*t*)=1 at *t*=0.50000 (2) as predicted
- Transition at *t/E* = 0.535 (5)
- At transition *z*(*t*)=1.06 (1) not *z*(*t*)=1
- Average distance and diameter of GCC maximum at this point and second derivative of number of vertices in GCC zero at this point (within errors)

⇒Finite size effects clearly present

Generalisations of Model

- Add a graph to the individual vertices
 -choose who to copy using individual's network
- Add a graph to the artifact vertices

 mutations/innovations limited by metric in an
 artifact space
- Different types of individual -update their choice and copy/innovate at different rates

Adding a Network of Individuals

- **Removal**: Choose random individual as before
- Attachment:

With probability $(1-p_r)$ the individual **copies** the existing choice of any **neighbouring** individual. With probability (p_r) the individual **innovates**

Equilibrium with a Network of Individuals

Qualitative behaviour largely unchanged except for 1d Lattice

Approach to Equilibrium for different Individual networks

 Results move away from complete graph as move from 3d -> 1d lattice

Voter Model [Liggett 1999; Sood & Redner 2005]

- At each time step an individual is chosen randomly who copies the choice of a neighbour in an individual network
- Equivalent to **N=2**, **p**_r=0 limit here
- Study time scales to come to complete
 consensus = condensation
- Used for models of language [Stauffer et al. 2006]

⇒We find approach to complete consensus is slow but a little randomness can speed this up while leaving a fairly complete condensation Minority Game Example - Leaders and Followers

- At each step each individual chooses one or zero – the *minority* choice wins
- Choices are made based on one of a large but finite number of strategies using finite history

 each strategy is a different artifact
- Individuals may follow their own prediction or they may follow the prediction from the most successful nearest neighbour in an ER random graph of individuals

 i.e. they *copy* the strategy of a neighbour
 [Anghel et al. PRL 92 (2004) 058701]

Minority Game Example – Leaders and Followers

Plot *n(k)* the average of the number of strategies (of some leader) used by *k* individuals (followers). Various system sizes and various ER random graphs.

Minority Game Example - Leaders and Followers

Minority Game variant [Anghel et al, 2004] Agents (individual vertices) *copy* best strategy (artifacts) of their neighbours in an additional individual network. Number of people following a given strategy is effectively n(k) of our model.

Shows how **copying** can arise naturally c.f. preferential attachment in growing networks [TSE & Saramaki 2005]

Two Tribes

Change model so there are two types of individual, each type chooses new artifacts with their own probabilities for:- (A) copying from same type, (B) copying from different type, (C) innovation

Two Tribes

Exact solutions for inhomogeneity measures
 *F*_{2ab}(*t*) [*a*,*b*∈{X,Y}] still possible
 solutions of three-dimensional matrix

- 8 free parameters
 - difficult to draw general conclusions
- Might relate to *Freakonomics* type explanation for baby names in terms of different socioeconomic groups

Summary

- Made connections between rewiring of bipartite network and many other network, statistical physics and social science models.
 Some connections made in some existing papers.
- Exact mean field equation. Only now is behaviour at boundary k=E correct.
- Exact equilibrium solutions. Previous results for large degree k, large systems N,E.
- Exact solutions for all times in terms of standard functions phase transitions in time I know of no other network solutions for arbitrary time and arbitrary size.

Summary

Many variations of model

Individual Networks

- Only 1d lattice seems to make a big difference to equilibrium
- Generalisation of Voter models
 p_r can speed process up without significantly upsetting consensus
- Two Tribes

exact solutions for some aspects possible with two types of individual